Listing 1 - 10 of 15 | << page >> |
Sort by
|
Choose an application
Choose an application
The theory of motives was created by Grothendieck in the 1960s as he searched for a universal cohomology theory for algebraic varieties. The theory of pure motives is well established as far as the construction is concerned. Pure motives are expected to have a number of additional properties predicted by Grothendieck's standard conjectures, but these conjectures remain wide open. The theory for mixed motives is still incomplete. This book deals primarily with the theory of pure motives. The exposition begins with the fundamentals: Grothendieck's construction of the category of pure motives and examples. Next, the standard conjectures and the famous theorem of Jannsen on the category of the numerical motives are discussed. Following this, the important theory of finite dimensionality is covered. The concept of Chow-Künneth decomposition is introduced, with discussion of the known results and the related conjectures, in particular the conjectures of Bloch-Beilinson type. We finish with a chapter on relative motives and a chapter giving a short introduction to Voevodsky's theory of mixed motives -- P. 4 of cover.
Choose an application
Choose an application
Motives (Mathematics). --- Motives (Mathematics) --- Mathematics --- Physical Sciences & Mathematics --- Geometry --- Theory of motives (Mathematics) --- Algebraic varieties --- Homology theory
Choose an application
Transcendental numbers --- Motives (Mathematics) --- Algebraic fields
Choose an application
Feynman integrals --- Motives (Mathematics) --- Quantum field theory
Choose an application
This exploration of the relation between periods and transcendental numbers brings Baker's theory of linear forms in logarithms into its most general framework, the theory of 1-motives. Written by leading experts in the field, it contains original results and finalises the theory of linear relations of 1-periods, answering long-standing questions in transcendence theory. It provides a complete exposition of the new theory for researchers, but also serves as an introduction to transcendence for graduate students and newcomers. It begins with foundational material, including a review of the theory of commutative algebraic groups and the analytic subgroup theorem as well as the basics of singular homology and de Rham cohomology. Part II addresses periods of 1-motives, linking back to classical examples like the transcendence of π, before the authors turn to periods of algebraic varieties in Part III. Finally, Part IV aims at a dimension formula for the space of periods of a 1-motive in terms of its data.
Transcendental numbers. --- Motives (Mathematics) --- Algebraic fields.
Choose an application
Algebraic geometry is a central subfield of mathematics in which the study of cycles is an important theme. Alexander Grothendieck taught that algebraic cycles should be considered from a motivic point of view and in recent years this topic has spurred a lot of activity. This book is one of two volumes that provide a self-contained account of the subject as it stands. Together, the two books contain twenty-two contributions from leading figures in the field which survey the key research strands and present interesting new results. Topics discussed include: the study of algebraic cycles using Abel-Jacobi/regulator maps and normal functions; motives (Voevodsky's triangulated category of mixed motives, finite-dimensional motives); the conjectures of Bloch-Beilinson and Murre on filtrations on Chow groups and Bloch's conjecture. Researchers and students in complex algebraic geometry and arithmetic geometry will find much of interest here.
Algebraic cycles --- Motives (Mathematics) --- Theory of motives (Mathematics) --- Algebraic varieties --- Homology theory --- Cycles, Algebraic --- Geometry, Algebraic
Choose an application
Algebraic geometry is a central subfield of mathematics in which the study of cycles is an important theme. Alexander Grothendieck taught that algebraic cycles should be considered from a motivic point of view and in recent years this topic has spurred a lot of activity. This 2007 book is one of two volumes that provide a self-contained account of the subject. Together, the two books contain twenty-two contributions from leading figures in the field which survey the key research strands and present interesting new results. Topics discussed include: the study of algebraic cycles using Abel-Jacobi/regulator maps and normal functions; motives (Voevodsky's triangulated category of mixed motives, finite-dimensional motives); the conjectures of Bloch-Beilinson and Murre on filtrations on Chow groups and Bloch's conjecture. Researchers and students in complex algebraic geometry and arithmetic geometry will find much of interest here.
Algebraic cycles --- Motives (Mathematics) --- Theory of motives (Mathematics) --- Algebraic varieties --- Homology theory --- Cycles, Algebraic --- Geometry, Algebraic
Choose an application
Motives (Mathematics) --- Categories (Mathematics) --- Motifs (mathématiques) --- Catégories (mathématiques)
Listing 1 - 10 of 15 | << page >> |
Sort by
|