Listing 1 - 10 of 259 | << page >> |
Sort by
|
Choose an application
Choose an application
Random variables --- Measure theory --- Measure algebras --- Probabilities
Choose an application
Group theory --- Hypergroups. --- Hypergroupes. --- Representations of groups. --- Représentations de groupes. --- Measure algebras. --- Algèbres de mesures. --- Hypergroups --- Measure algebras --- Representations of groups --- Group representation (Mathematics) --- Groups, Representation theory of --- Algebras, Measure --- Harmonic analysis --- Measure theory
Choose an application
Analytical spaces --- Measure algebras. --- Banach algebras. --- Semigroups. --- Algèbres de mesures. --- Spaces of measures. --- Espaces de mesures. --- Algèbres de mesures.
Choose an application
The main goal of this Handbook isto survey measure theory with its many different branches and itsrelations with other areas of mathematics. Mostly aggregating many classical branches of measure theory the aim of the Handbook is also to cover new fields, approaches and applications whichsupport the idea of ""measure"" in a wider sense, e.g. the ninth part of the Handbook. Although chapters are written of surveys in the variousareas they contain many special topics and challengingproblems valuable for experts and rich sources of inspiration.Mathematicians from other area
Measure theory. --- Lebesgue measure --- Measurable sets --- Measure of a set --- Algebraic topology --- Integrals, Generalized --- Measure algebras --- Rings (Algebra)
Choose an application
From Measures to Itô Integrals gives a clear account of measure theory, leading via L2-theory to Brownian motion, Itô integrals and a brief look at martingale calculus. Modern probability theory and the applications of stochastic processes rely heavily on an understanding of basic measure theory. This text is ideal preparation for graduate-level courses in mathematical finance and perfect for any reader seeking a basic understanding of the mathematics underpinning the various applications of Itô calculus.
Measure theory --- Lebesgue measure --- Measurable sets --- Measure of a set --- Algebraic topology --- Integrals, Generalized --- Measure algebras --- Rings (Algebra)
Choose an application
Theory of Charges
Algebraic topology --- Mathematical physics --- Measure theory. --- Measure theory --- Lebesgue measure --- Measurable sets --- Measure of a set --- Integrals, Generalized --- Measure algebras --- Rings (Algebra) --- Topologie algébrique --- Algebraïsche topologie.
Choose an application
Intégration, Chapitres 1 à 4 Les Éléments de mathématique de Nicolas BOURBAKI ont pour objet une présentation rigoureuse, systématique et sans prérequis des mathématiques depuis leurs fondements. Ce sixième chaptire du Livre d’Intégration, sixième Livre des éléments de mathématique, étend la notion d’intégration à des mesure à valeurs dans des espaces vectoriels de Hausdorff localement convexes. Il contient également une note historique. Ce volume est une réimpression de l’édition de 1959.
Integrals. --- Calculus, Integral --- Mathematics. --- Measure and Integration. --- Math --- Science --- Measure theory. --- Lebesgue measure --- Measurable sets --- Measure of a set --- Algebraic topology --- Integrals, Generalized --- Measure algebras --- Rings (Algebra)
Choose an application
Intégration, Chapitre 5 Les Éléments de mathématique de Nicolas BOURBAKI ont pour objet une présentation rigoureuse, systématique et sans prérequis des mathématiques depuis leurs fondements. Ce cinquième chaptire du Livre d’Intégration, sixième Livre des éléments de mathématique, traite notamment d’une generalisation du théorème des Lebesgue-Fubini et du théorème de Lebesque-Nikodym. Il contient également des notes historiques. Ce volume est une réimpression de l’édition de 1967.
Integrals. --- Calculus, Integral --- Mathematics. --- Measure and Integration. --- Math --- Science --- Measure theory. --- Lebesgue measure --- Measurable sets --- Measure of a set --- Algebraic topology --- Integrals, Generalized --- Measure algebras --- Rings (Algebra)
Choose an application
Measure theory. Mathematical integration --- Integrals, Generalized. --- Measure theory. --- Integrals, Generalized --- Measure theory --- Lebesgue measure --- Measurable sets --- Measure of a set --- Algebraic topology --- Measure algebras --- Rings (Algebra) --- Calculus, Integral
Listing 1 - 10 of 259 | << page >> |
Sort by
|