Listing 1 - 10 of 22 | << page >> |
Sort by
|
Choose an application
Fuel pumps --- Testing.
Choose an application
Choose an application
Choose an application
To drastically reduce the emission of greenhouse gases, the development of future internal combustion engines will be strictly linked to the development of CO2 neutral fuels (e.g. biofuels and e-fuels). This evolution implies an increase in development complexity, which needs the support of engine 3D-CFD simulations. Francesco Cupo presents approaches to accurately describe fuel characteristics and knock occurrence in SI engines, thus improving the current simulation capability in investigating alternative fuels and innovative combustion processes. The developed models are successfully used to investigate the influence of ethanol-based fuels and water injection strategies on knock occurrence and to conduct a virtual fuel design for and engine operating with the innovative SACI combustion strategy. Contents Detailed description of real fuels Locally-distributed auto-ignition model and knock detection Influence of ethanol-based fuels and water injection on combustion and knock Virtual fuel design for SACI combustion strategy Target Groups Researchers and students in the field of automotive engineering Automotive engineers The Author Francesco Cupo obtained a PhD at the research Institute of Automotive Engineering (IFS) in Stuttgart, Germany. His activity is currently focusing on the design of advanced internal combustion engines and alternative fuels.
Internal combustion engines --- Fuel pumps --- Fuel systems.
Choose an application
Choose an application
Fuel pumps --- Motor fuels --- Labeling --- Standards
Choose an application
Fuel pumps --- Ethanol as fuel --- United States.
Choose an application
Fuel Injection is a key process characterizing the combustion development within Internal Combustion Engines (ICEs) and in many other industrial applications. State of the art in the research and development of modern fuel injection systems are presented in this book. It consists of 12 chapters focused on both numerical and experimental techniques, allowing its proper design and optimization.
Internal combustion engines --- Fuel systems. --- Fuel pumps --- Automotive technology & trades
Choose an application
This book highlights the important need for more efficient and environmentally sound combustion technologies that utilise renewable fuels to be continuously developed and adopted. The central theme here is two-fold: internal combustion engines and fuel solutions for combustion systems. Internal combustion engines remain as the main propulsion system used for ground transportation, and the number of successful developments achieved in recent years is as varied as the new design concepts introduced. It is therefore timely that key advances in engine technologies are organised appropriately so that the fundamental processes, applications, insights and identification of future development can be consolidated. In the future and across the developed and emerging markets of the world, the range of fuels used will significantly increase as biofuels, new fossil fuel feedstock and processing methods, as well as variations in fuel standards continue to influence all combustion technologies used now and in coming streams. This presents a challenge requiring better understanding of how the fuel mix influences the combustion processes in various systems. The book allows extremes of the theme to be covered in a simple yet progressive way.
Internal combustion engines --- Fuel systems. --- Fuel pumps --- Automotive technology & trades
Choose an application
Diesel motor. --- Internal combustion engines --- Fuel pumps. --- Ingnition.
Listing 1 - 10 of 22 | << page >> |
Sort by
|