Listing 1 - 7 of 7 |
Sort by
|
Choose an application
The agricultural community is face with the challenge of increasing food production by more than 70% to meet demand from the global population increase by the mid-21st century. Sustainable food production involves the sustained availability of resources, such as water and energy, to agriculture. The key challenges to sustainable food production are population increase, increasing demands for food, climate change, climate variability, and decreasing per capita land and water resources. To discuss more details on (a) the challenges for sustainable food production and (b) mitigation options available, a Special Issue on “Water Management for Sustainable Food Production” was assembled. This Special Issue focused on issues such as irrigation using brackish water, virtual water trade, allocation of water resources, consequences of excess precipitation on crop yields, strategies to increase water productivity, rainwater harvesting, irrigation water management, deficit irrigation, fertilization, environmental and socio-economic impacts, and irrigation water quality. The articles in the Special Issue cover several water-related issues across the U.S., Asia, Middle East, Africa, and Pakistan concerning sustainable food production. The articles in this Special Issue highlight the substantial impacts on agricultural production, water availability, and water quality in the face of increasing demands for food and energy.
AquaCrop model --- capillary rise --- climate change --- rainfall variability --- supplemental irrigation --- crop growth --- lettuce --- AquaCrop --- water saving --- water productivity --- deficit irrigation --- nitrogen productivity --- fertigation --- drip irrigation --- low-discharge --- arid regions --- Africa --- food security --- system of rice intensification --- water conservation --- climate variability --- water use efficiency --- multi-crop production --- pressure irrigation systems --- water costs --- corn --- soybeans --- maize --- crop-water production function --- West Africa --- spatiotemporal rainfall variability --- tied ridges --- scattered plots --- pearl millet --- yield loss --- crop uptake --- food quality --- geogenic --- emerging contaminants --- nanomaterials --- lysimeter --- canola --- water table --- root distribution --- evapotranspiration --- sustainable irrigation --- bibliometric analysis --- innovation and technology --- unconventional water resources --- delayed transplanting --- seedling age --- seedling density --- wet season --- grain sorghum --- precipitation --- rainfed --- multiple linear regression --- crop yield --- principal component analysis --- water allocation --- WEAP model --- scenario --- Awash River Basin --- sustainability --- agriculture --- virtual water trade --- blue --- green --- arid region --- brackish water --- sub surface drip irrigation (SDI) --- salinity --- sodicity --- olives trees --- excess precipitation --- irrigation water quality --- virtual water --- brackish groundwater --- rainwater harvesting --- socio-economic impacts
Choose an application
The agricultural community is face with the challenge of increasing food production by more than 70% to meet demand from the global population increase by the mid-21st century. Sustainable food production involves the sustained availability of resources, such as water and energy, to agriculture. The key challenges to sustainable food production are population increase, increasing demands for food, climate change, climate variability, and decreasing per capita land and water resources. To discuss more details on (a) the challenges for sustainable food production and (b) mitigation options available, a Special Issue on “Water Management for Sustainable Food Production” was assembled. This Special Issue focused on issues such as irrigation using brackish water, virtual water trade, allocation of water resources, consequences of excess precipitation on crop yields, strategies to increase water productivity, rainwater harvesting, irrigation water management, deficit irrigation, fertilization, environmental and socio-economic impacts, and irrigation water quality. The articles in the Special Issue cover several water-related issues across the U.S., Asia, Middle East, Africa, and Pakistan concerning sustainable food production. The articles in this Special Issue highlight the substantial impacts on agricultural production, water availability, and water quality in the face of increasing demands for food and energy.
Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- AquaCrop model --- capillary rise --- climate change --- rainfall variability --- supplemental irrigation --- crop growth --- lettuce --- AquaCrop --- water saving --- water productivity --- deficit irrigation --- nitrogen productivity --- fertigation --- drip irrigation --- low-discharge --- arid regions --- Africa --- food security --- system of rice intensification --- water conservation --- climate variability --- water use efficiency --- multi-crop production --- pressure irrigation systems --- water costs --- corn --- soybeans --- maize --- crop-water production function --- West Africa --- spatiotemporal rainfall variability --- tied ridges --- scattered plots --- pearl millet --- yield loss --- crop uptake --- food quality --- geogenic --- emerging contaminants --- nanomaterials --- lysimeter --- canola --- water table --- root distribution --- evapotranspiration --- sustainable irrigation --- bibliometric analysis --- innovation and technology --- unconventional water resources --- delayed transplanting --- seedling age --- seedling density --- wet season --- grain sorghum --- precipitation --- rainfed --- multiple linear regression --- crop yield --- principal component analysis --- water allocation --- WEAP model --- scenario --- Awash River Basin --- sustainability --- agriculture --- virtual water trade --- blue --- green --- arid region --- brackish water --- sub surface drip irrigation (SDI) --- salinity --- sodicity --- olives trees --- excess precipitation --- irrigation water quality --- virtual water --- brackish groundwater --- rainwater harvesting --- socio-economic impacts
Choose an application
The agricultural community is face with the challenge of increasing food production by more than 70% to meet demand from the global population increase by the mid-21st century. Sustainable food production involves the sustained availability of resources, such as water and energy, to agriculture. The key challenges to sustainable food production are population increase, increasing demands for food, climate change, climate variability, and decreasing per capita land and water resources. To discuss more details on (a) the challenges for sustainable food production and (b) mitigation options available, a Special Issue on “Water Management for Sustainable Food Production” was assembled. This Special Issue focused on issues such as irrigation using brackish water, virtual water trade, allocation of water resources, consequences of excess precipitation on crop yields, strategies to increase water productivity, rainwater harvesting, irrigation water management, deficit irrigation, fertilization, environmental and socio-economic impacts, and irrigation water quality. The articles in the Special Issue cover several water-related issues across the U.S., Asia, Middle East, Africa, and Pakistan concerning sustainable food production. The articles in this Special Issue highlight the substantial impacts on agricultural production, water availability, and water quality in the face of increasing demands for food and energy.
Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- AquaCrop model --- capillary rise --- climate change --- rainfall variability --- supplemental irrigation --- crop growth --- lettuce --- AquaCrop --- water saving --- water productivity --- deficit irrigation --- nitrogen productivity --- fertigation --- drip irrigation --- low-discharge --- arid regions --- Africa --- food security --- system of rice intensification --- water conservation --- climate variability --- water use efficiency --- multi-crop production --- pressure irrigation systems --- water costs --- corn --- soybeans --- maize --- crop-water production function --- West Africa --- spatiotemporal rainfall variability --- tied ridges --- scattered plots --- pearl millet --- yield loss --- crop uptake --- food quality --- geogenic --- emerging contaminants --- nanomaterials --- lysimeter --- canola --- water table --- root distribution --- evapotranspiration --- sustainable irrigation --- bibliometric analysis --- innovation and technology --- unconventional water resources --- delayed transplanting --- seedling age --- seedling density --- wet season --- grain sorghum --- precipitation --- rainfed --- multiple linear regression --- crop yield --- principal component analysis --- water allocation --- WEAP model --- scenario --- Awash River Basin --- sustainability --- agriculture --- virtual water trade --- blue --- green --- arid region --- brackish water --- sub surface drip irrigation (SDI) --- salinity --- sodicity --- olives trees --- excess precipitation --- irrigation water quality --- virtual water --- brackish groundwater --- rainwater harvesting --- socio-economic impacts
Choose an application
Above ground biomass has been listed by the Intergovernmental Panel on Climate Change as one of the five most prominent, visible, and dynamic terrestrial carbon pools. The increased awareness of the impacts of climate change has seen a burgeoning need to consistently assess carbon stocks to combat carbon sequestration. An accurate estimation of carbon stocks and an understanding of the carbon sources and sinks can aid the improvement and accuracy of carbon flux models, an important pre-requisite of climate change impact projections. Based on 15 research topics, this book demonstrates the role of remote sensing in quantifying above ground biomass (forest, grass, woodlands) across varying spatial and temporal scales. The innovative application areas of the book include algorithm development and implementation, accuracy assessment, scaling issues (local–regional–global biomass mapping), and the integration of microwaves (i.e. LiDAR), along with optical sensors, forest biomass mapping, rangeland productivity and abundance (grass biomass, density, cover), bush encroachment biomass, and seasonal and long-term biomass monitoring.
NDLMA --- n/a --- multi-angle remote sensing --- TerraSAR-X --- above ground biomass --- stem volume --- regression analysis --- ground-based remote sensing --- sensor fusion --- pasture biomass --- grazing management --- livestock --- mixed forest --- SPLSR --- estimation accuracy --- Bidirectional Reflectance Distribution Factor --- forage crops --- Land Surface Phenology --- climate change --- vegetation index --- dry biomass --- mapping --- rangeland productivity --- vegetation indices --- error analysis --- broadleaves --- remote sensing --- applicability evaluation --- ultrasonic sensor --- chlorophyll index --- alpine meadow grassland --- forest biomass --- anthropogenic disturbance --- fractional vegetation cover --- alpine grassland conservation --- carbon mitigation --- conifer --- short grass --- grazing exclusion --- MODIS time series --- random forest --- aboveground biomass --- NDVI --- AquaCrop model --- inversion model --- wetlands --- field spectrometry --- spectral index --- yield --- foliage projective cover --- lidar --- correlation coefficient --- Sahel --- biomass --- dry matter index --- Niger --- Landsat --- grass biomass --- particle swarm optimization --- winter wheat --- carbon inventory --- rice --- forest structure information --- MODIS --- light detection and ranging (LiDAR) --- ALOS2 --- ecological policies --- above-ground biomass --- Wambiana grazing trial --- food security --- forest above ground biomass (AGB) --- Atriplex nummularia --- regional sustainability --- CIRed-edge
Choose an application
Irrigation is becoming an activity of precision, where combining information collected from various sources is necessary to optimally manage resources. New management strategies, such as big data techniques, sensors, artificial intelligence, unmanned aerial vehicles (UAV), and new technologies in general, are becoming more relevant every day. As such, modeling techniques, both at the water distribution network and the farm levels, will be essential to gather information from various sources and offer useful recommendations for decision-making processes. In this book, 10 high quality papers were selected that cover a wide range of issues that are relevant to the different aspects related to irrigation management: water source and distribution network, plot irrigation systems, and crop water management.
Calathea --- irrigation demands --- variable topography --- water need index (WNI) --- rotator spray sprinkler --- olive orchard --- evapotranspiration --- modified drag model --- center pivot system --- hydraulic model --- optimization --- energy consumption --- the stable carbon isotope technique --- pump-as-turbine --- irrigation DSS --- Stromanthe --- ballistic simulation --- water resources management --- weed algorithm --- low-pressure --- modelling --- decision support systems --- water depth --- payback period --- irrigation networks --- water productivity --- fertigation scheduling --- container-grown plants --- irrigation water allocation --- actual evapotranspiration (ETA) --- sugar beet --- precision irrigation --- combinatorial analysis --- lined irrigation open-canal --- calibration --- soil-water-plant-atmosphere models --- daily water requirements --- hydraulic modelling --- AquaCrop --- reclaimed water --- hydropower --- crop transpiration --- water-energy nexus --- variable speed --- summer maize --- ornamental foliage plants --- Aswan High Dam --- energy losses --- well --- drip irrigation --- statistical analysis --- unmeasured discharges estimation --- irrigation network
Choose an application
Water scarcity is a critical issue for agriculture, and, hence, efficient management and conservation practices for agricultural water use are essential for adapting to and mitigating the impacts of current and future discrepancy between water supplies and water demands. This Special Issue focuses on “Agricultural Water Conservation: Tools, Strategies, and Practices”, which aims to bring together a collection of recent cutting-edge research and advancements in agricultural water conservation. The Special Issue intends to give a broad overview focusing on on-farm water conservation practices, advanced irrigation tools and water technologies, and the best management practices and strategies for efficient water use in agriculture.
Research. --- Biology. --- Technology. --- Engineering. --- Agriculture. --- irrigation --- groundwater --- alluvial aquifer --- water conservation adoption --- row crops --- Mississippi Delta --- precision agriculture --- Lower Mississippi River Valley --- clogging --- drip irrigation --- emitter --- hydrocyclone --- digestate liquid fraction --- wastewater --- salinity --- environments --- AquaCrop model --- water productivity --- scenarios --- tolerant --- Colorado River Basin --- drought --- irrigation management strategy --- water deficit --- optimum water use --- forage --- BEARS --- bushland --- climate --- evapotranspiration --- groundwater management --- irrigation water management --- Ogallala aquifer region --- remote sensing --- lysimeter ET assessment --- water-use efficiency --- analytical formula --- efficient design --- application efficiency --- gravity irrigation --- solar MajiPump --- water and crop productivity --- small-scale irrigation --- conservation agriculture --- Ethiopia --- sensible and latent heat fluxes --- surface renewal method --- tea plantation --- eddy covariance --- squash --- partial root drying --- water use efficiency --- soil mulch --- growing seasons --- gas exchange --- fruit quality --- Asparagus officinalis L. --- cultivars --- spears yield --- sandy soil --- water requirements --- IWUE --- autonomous landscape irrigation --- Hargreaves and Samani evapotranspiration model --- water conservation --- smart controller --- n/a
Choose an application
Water scarcity is a critical issue for agriculture, and, hence, efficient management and conservation practices for agricultural water use are essential for adapting to and mitigating the impacts of current and future discrepancy between water supplies and water demands. This Special Issue focuses on “Agricultural Water Conservation: Tools, Strategies, and Practices”, which aims to bring together a collection of recent cutting-edge research and advancements in agricultural water conservation. The Special Issue intends to give a broad overview focusing on on-farm water conservation practices, advanced irrigation tools and water technologies, and the best management practices and strategies for efficient water use in agriculture.
Research. --- Biology. --- Technology. --- Engineering. --- Agriculture. --- irrigation --- groundwater --- alluvial aquifer --- water conservation adoption --- row crops --- Mississippi Delta --- precision agriculture --- Lower Mississippi River Valley --- clogging --- drip irrigation --- emitter --- hydrocyclone --- digestate liquid fraction --- wastewater --- salinity --- environments --- AquaCrop model --- water productivity --- scenarios --- tolerant --- Colorado River Basin --- drought --- irrigation management strategy --- water deficit --- optimum water use --- forage --- BEARS --- bushland --- climate --- evapotranspiration --- groundwater management --- irrigation water management --- Ogallala aquifer region --- remote sensing --- lysimeter ET assessment --- water-use efficiency --- analytical formula --- efficient design --- application efficiency --- gravity irrigation --- solar MajiPump --- water and crop productivity --- small-scale irrigation --- conservation agriculture --- Ethiopia --- sensible and latent heat fluxes --- surface renewal method --- tea plantation --- eddy covariance --- squash --- partial root drying --- water use efficiency --- soil mulch --- growing seasons --- gas exchange --- fruit quality --- Asparagus officinalis L. --- cultivars --- spears yield --- sandy soil --- water requirements --- IWUE --- autonomous landscape irrigation --- Hargreaves and Samani evapotranspiration model --- water conservation --- smart controller
Listing 1 - 7 of 7 |
Sort by
|