Narrow your search

Library

EhB (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VDIC (2)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2008 (2)

2006 (3)

Listing 1 - 5 of 5
Sort by
Genetic improvement of bioenergy crops
Author:
ISBN: 128173411X 9786611734114 0387708057 0387708049 1441924221 Year: 2008 Publisher: New York : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Genetic Improvement of Bioenergy Crops Wilfred Vermerris, Editor Bioenergy is attracting increasing attention in science, industry, politics and the media as a means to address energy security, global climate change and economic sustainability. Biofuels – ethanol and biodiesel – currently represent the only alternative and renewable energy source available as liquid transportation fuel. The current production of biofuels relies heavily on food crops: grain and sugar for ethanol, and plant oils for biodiesel. This has raised serious concerns about food supplies, food prices, and long-term sustainability. Second-generation biofuels are derived from dedicated bioenergy crops that produce plant cell wall polysaccharides as the main source of fermentable sugars, as well as algae and non-edible oil crops as a source of oils and lipids for biodiesel. The development of dedicated bioenergy crops requires an entirely different approach to plant improvement than what has been traditional for food, feed and fiber crops. This book presents an overview of the major bioenergy crops that can be used for the production of biomass and ethanol, with a focus on their genetic improvement. In order to maintain focus, biodiesel and the genetic improvement of oil crops are not covered. The available genetic resources are largely untapped and offer major opportunities to significantly enhance the contribution of bioenergy, while addressing many of the economic and ecological concerns. The chapters have been written by experts in their field and target university students in plant sciences, biological engineering, or related disciplines, enrolled in a course on bioenergy crops. Researchers in academia and industry will find this book useful as well. The first part of the book provides background on the politics of bioenergy, the current ethanol production process, the biosynthesis and analysis of plant cell walls, and processing of biomass, and includes a primer on genetics and plant breeding. The second part of the book focuses on the genetic resources available to enhance individual herbaceous and woody species for use as bioenergy feedstocks. As a whole, Genetic Improvement of Bioenergy Crops provides the first comprehensive overview of the tremendous potential of dedicated bioenergy crops. Wilfred Vermerris is Associate Professor at the Genetics Institute and Agronomy department at the University of Florida in Gainesville, where he manages an active research program on plant cell walls and their use in bioenergy applications. He is also faculty associate with the University of Florida’s Plant Molecular and Cellular Biology graduate program, Adjunct Associate Professor in Agricultural & Biological Engineering at Purdue University and adjunct faculty member of Purdue University’s Laboratory of Renewable Resources Engineering. He is co-author of the book Phenolic Compound Biochemistry (Springer 2006) and one of the three Co-Editors-in-Chief of the journal BioEnergy Research.


Book
Phenolic compound biochemistry
Authors: ---
ISBN: 1280803649 9786610803644 1402051646 Year: 2006 Publisher: Dordrecht : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

These are just a few examples that illustrate the chemical diversity and use of phenolic compounds, the topic of ‘Phenolic Compound Biochemistry’. This book is written for researchers, instructors, advanced undergraduate students and beginning graduate students in the life sciences who wish to become more familiar with these and many other intriguing aspects of phenolic compounds. Topics covered include nomenclature, chemical properties, biosynthesis, including an up-to-date overview of the genetics controlling phenolic metabolism, isolation and characterization of phenolic compounds, phenolics used in plant defense, and the impact of phenolics on human health. The book is written in an accessible style, and assumes only basic knowledge of organic chemistry, biochemistry and cell physiology. More than 300 chemical structures and reaction schemes illustrate the text. Wilfred Vermerris is Associate Professor of Agronomy at the University of Florida Genetics Institute in Gainesville, FL. His research focuses on the genetic control of phenolic compounds that impact agro-industrial processing of crop plants. Ralph Nicholson is Professor of Botany and Plant Pathology at Purdue University in West Lafayette, IN. He is an expert on phenolic compounds involved in the plant’s defense against pathogenic fungi and bacteria.


Book
Genetic Improvement of Bioenergy Crops
Authors: ---
ISBN: 9780387708058 Year: 2008 Publisher: New York NY Springer New York

Loading...
Export citation

Choose an application

Bookmark

Abstract

Genetic Improvement of Bioenergy Crops Wilfred Vermerris, Editor Bioenergy is attracting increasing attention in science, industry, politics and the media as a means to address energy security, global climate change and economic sustainability. Biofuels - ethanol and biodiesel - currently represent the only alternative and renewable energy source available as liquid transportation fuel. The current production of biofuels relies heavily on food crops: grain and sugar for ethanol, and plant oils for biodiesel. This has raised serious concerns about food supplies, food prices, and long-term sustainability. Second-generation biofuels are derived from dedicated bioenergy crops that produce plant cell wall polysaccharides as the main source of fermentable sugars, as well as algae and non-edible oil crops as a source of oils and lipids for biodiesel. The development of dedicated bioenergy crops requires an entirely different approach to plant improvement than what has been traditional for food, feed and fiber crops. This book presents an overview of the major bioenergy crops that can be used for the production of biomass and ethanol, with a focus on their genetic improvement. In order to maintain focus, biodiesel and the genetic improvement of oil crops are not covered. The available genetic resources are largely untapped and offer major opportunities to significantly enhance the contribution of bioenergy, while addressing many of the economic and ecological concerns. The chapters have been written by experts in their field and target university students in plant sciences, biological engineering, or related disciplines, enrolled in a course on bioenergy crops. Researchers in academia and industry will find this book useful as well. The first part of the book provides background on the politics of bioenergy, the current ethanol production process, the biosynthesis and analysis of plant cell walls, and processing of biomass, and includes a primer on genetics and plant breeding. The second part of the book focuses on the genetic resources available to enhance individual herbaceous and woody species for use as bioenergy feedstocks. As a whole, Genetic Improvement of Bioenergy Crops provides the first comprehensive overview of the tremendous potential of dedicated bioenergy crops. Wilfred Vermerris is Associate Professor at the Genetics Institute and Agronomy department at the University of Florida in Gainesville, where he manages an active research program on plant cell walls and their use in bioenergy applications. He is also faculty associate with the University of Florida's Plant Molecular and Cellular Biology graduate program, Adjunct Associate Professor in Agricultural & Biological Engineering at Purdue University and adjunct faculty member of Purdue University's Laboratory of Renewable Resources Engineering. He is co-author of the book Phenolic Compound Biochemistry (Springer 2006) and one of the three Co-Editors-in-Chief of the journal BioEnergy Research.

Phenolic compound biochemistry
Authors: ---
ISBN: 1402051638 9781402051630 Year: 2006 Publisher: Dordrecht : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

How does the consumption of red wine reduce heart disease? How does a plant battle an invading fungus using physical and chemical defense mechanisms? How are tannins used in leather production synthesized? These are just a few examples that illustrate the chemical diversity and use of phenolic compounds, the topic of Phenolic Compound Biochemistry'. This book is written for researchers, instructors, advanced undergraduate students and beginning graduate students in the life sciences who wish to become more familiar with these and many other intriguing aspects of phenolic compounds. Topics covered include nomenclature, chemical properties, biosynthesis, including an up-to-date overview of the genetics controlling phenolic metabolism, isolation and characterization of phenolic compounds, phenolics used in plant defense, and the impact of phenolics on human health. The book is written in an accessible style, and assumes only basic knowledge of organic chemistry, biochemistry and cell physiology. More than 300 chemical structures and reaction schemes illustrate the text. Wilfred Vermerris is Associate Professor of Agronomy at the University of Florida Genetics Institute in Gainesville, FL. His research focuses on the genetic control of phenolic compounds that impact agro-industrial processing of crop plants. Ralph Nicholson is Professor of Botany and Plant Pathology at Purdue University in West Lafayette, IN. He is an expert on phenolic compounds involved in the plant's defense against pathogenic fungi and bacteria.

Keywords

Phenols.


Book
Phenolic Compound Biochemistry
Authors: --- ---
ISBN: 9781402051647 Year: 2006 Publisher: Dordrecht Springer Netherlands

Loading...
Export citation

Choose an application

Bookmark

Abstract

These are just a few examples that illustrate the chemical diversity and use of phenolic compounds, the topic of ˜Phenolic Compound Biochemistry'. This book is written for researchers, instructors, advanced undergraduate students and beginning graduate students in the life sciences who wish to become more familiar with these and many other intriguing aspects of phenolic compounds. Topics covered include nomenclature, chemical properties, biosynthesis, including an up-to-date overview of the genetics controlling phenolic metabolism, isolation and characterization of phenolic compounds, phenolics used in plant defense, and the impact of phenolics on human health. The book is written in an accessible style, and assumes only basic knowledge of organic chemistry, biochemistry and cell physiology. More than 300 chemical structures and reaction schemes illustrate the text. Wilfred Vermerris is Associate Professor of Agronomy at the University of Florida Genetics Institute in Gainesville, FL. His research focuses on the genetic control of phenolic compounds that impact agro-industrial processing of crop plants. Ralph Nicholson is Professor of Botany and Plant Pathology at Purdue University in West Lafayette, IN. He is an expert on phenolic compounds involved in the plant's defense against pathogenic fungi and bacteria.

Listing 1 - 5 of 5
Sort by