Narrow your search

Library

UGent (6)


Resource type

article (6)


Language

Undetermined (6)


Year
From To Submit

2005 (1)

2004 (1)

2003 (3)

2001 (1)

Listing 1 - 6 of 6
Sort by

Article
Cognitive abilities - the result of selective pressures on food acquisition?
Author:
Year: 2001

Loading...
Export citation

Choose an application

Bookmark

Abstract


Article
Cooperative problem solving in a cooperatively breeding primate (Saguinus oedipus).

Loading...
Export citation

Choose an application

Bookmark

Abstract

We investigated cooperative problem solving in unrelated pairs of the cooperatively breeding cottontop tamarin, Saguinus oedipus, to assess the cognitive basis of cooperative behaviour in this species and to compare abilities with other apes and monkeys. A transparent apparatus was used that required extension of two handles at opposite ends of the apparatus for access to rewards. Resistance was applied to both handles so that two tamarins had to act simultaneously in order to receive rewards. In contrast to several previous studies of cooperation, both tamarins received rewards as a result of simultaneous pulling. The results from two experiments indicated that the cottontop tamarins (1) had a much higher success rate and efficiency of pulling than many of the other species previously studied, (2) adjusted pulling behaviour to the presence or absence of a partner, and (3) spontaneously developed sustained pulling techniques to solve the task. These findings suggest that cottontop tamarins understand the role of the partner in this cooperative task, a cognitive ability widely ascribed only to great apes. The cooperative social system of tamarins, the intuitive design of the apparatus, and the provision of rewards to both participants may explain the performance of the tamarins


Article
Clever hounds: social cognition in the domestic dog (Canis familiaris).

Loading...
Export citation

Choose an application

Bookmark

Abstract

This paper reviews the reasons why domestic dogs make good models to investigate cognitive processes related to social living and describes experimental approaches that can be adopted to investigate such processes in dogs. Domestic dogs are suitable models for investigating social cognition skills for three broad reasons. First, dogs originated from wolves, social animals that engage in a number of co-operative behaviours, such as hunting and that may have evolved cognitive abilities that help them predict and interpret the actions of other animals. Second, during domestication dogs are likely to have been selected for mental adaptations for their roles in human society such as herding or companionship. Third, domestic dogs live in a human world and "enculturation" may facilitate the development of relevant mental skills in dogs. Studies of social cognition in animals commonly use experimental paradigms originally developed for pre-verbal human infants. Preferential gaze, for example, can be used as a measure of attention or "surprise" in studies using expectancy violation. This approach has been used to demonstrate simple numerical competence in dogs. Dogs also readily use both conspecific and human social signals (e.g. looking or pointing) as information sources to locate hidden rewards such as food or favourite toys. Such abilities make dogs particularly good models for investigating perspective-taking tasks, where animals are required to discriminate between apparently knowledgeable and apparently ignorant informants.


Article
Clever hounds: social cognition in the domestic dog (Canis familiaris).

Loading...
Export citation

Choose an application

Bookmark

Abstract

This paper reviews the reasons why domestic dogs make good models to investigate cognitive processes related to social living and describes experimental approaches that can be adopted to investigate such processes in dogs. Domestic dogs are suitable models for investigating social cognition skills for three broad reasons. First, dogs originated from wolves, social animals that engage in a number of co-operative behaviours, such as hunting and that may have evolved cognitive abilities that help them predict and interpret the actions of other animals. Second, during domestication dogs are likely to have been selected for mental adaptations for their roles in human society such as herding or companionship. Third, domestic dogs live in a human world and "enculturation" may facilitate the development of relevant mental skills in dogs. Studies of social cognition in animals commonly use experimental paradigms originally developed for pre-verbal human infants. Preferential gaze, for example, can be used as a measure of attention or "surprise" in studies using expectancy violation. This approach has been used to demonstrate simple numerical competence in dogs. Dogs also readily use both conspecific and human social signals (e.g. looking or pointing) as information sources to locate hidden rewards such as food or favourite toys. Such abilities make dogs particularly good models for investigating perspective-taking tasks, where animals are required to discriminate between apparently knowledgeable and apparently ignorant informants. (C) 2003 Elsevier Science B.V. All rights reserved


Article
Brain measures which tell us about animal welfare.
Authors: ---
Year: 2004

Loading...
Export citation

Choose an application

Bookmark

Abstract

Studies of the brain inform us about the cognitive abilities of animals and hence affect the extent to which animals of that species are respected However, they can also tell us how an individual is likely to be perceiving, attending to, evaluating, coping with, enjoying, or disturbed by its environment, and so can give direct information about welfare. In studies of welfare, we are especially interested in how an individual feels. Since this depends upon high-level brain processing, we have to investigate brain function. Brain correlates of preferred social, sexual and parental situations include elevated oxytocin in the para-ventricular nucleus of the hypothalamus. Abnormal behaviour may have brain correlates, for example, high frequencies of stereotypy are associated with down-regulated P and kappa receptors and dopamine depletion in the frontal cortex. Such results help in evaluating the effects of treatment on welfare. Some brain changes, such as increased glucocorticoid receptors in the frontal lobes or increased activity in the amygdala, may be a sensitive indicator of perceived emergency. Active immunological defences lead to cytokine production in the brain, vagal nerve activity and sickness effects. Some aspects of brain function can be temporarily suppressed, for example, by opioids when there is severe pain, or permanently impaired, for example, in severely impoverished environments or during depression. Coping attempts or environmental impact can lead to injury to the brain, damage to hippocampal neurons, remodelling of dendrites in the hippocampus, or to other brain disorganisation. Brain measures can explain the nature and magnitude of many effects on welfare


Article
Individual differences in the expression of a "general" learning ability in mice.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Human performance on diverse tests of intellect are impacted by a "general" regulatory factor that accounts for up to 50% of the variance between individuals on intelligence tests. Neurobiological determinants of general cognitive abilities are essentially unknown, owing in part to the paucity of animal research wherein neurobiological analyses are possible. We report a methodology with which we have assessed individual differences in the general learning abilities of laboratory mice. Abilities of mice on tests of associative fear conditioning, operant avoidance, path integration, discrimination, and spatial navigation were assessed. Tasks were designed so that each made unique sensory, motor, motivational, and information processing demands on the animals. A sample of 56 genetically diverse outbred mice (CD-1) was used to assess individuals' acquisition on each task. Indicative of a common source of variance, positive correlations were found between individuals' performance on all tasks. When tested on multiple test batteries, the overall performance ranks of individuals were found to be highly reliable and were "normally" distributed. Factor analysis of learning performance variables determined that a single factor accounted for 38% of the total variance across animals. Animals' levels of native activity and body weights accounted for little of the variability in learning, although animals' propensity for exploration loaded strongly ( and was positively correlated) with learning abilities. These results indicate that diverse learning abilities of laboratory mice are influenced by a common source of variance and, moreover, that the general learning abilities of individual mice can be specified relative to a sample of peers

Listing 1 - 6 of 6
Sort by