Listing 1 - 10 of 1299 | << page >> |
Sort by
|
Choose an application
We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Technical course prerequisites are a basic knowledge of ordinary and partial differential equations and of statistics. Each chapter comes with exercises and suggestions for further reading - solutions to the exercises are also provided. This second edition adds a new chapter on quantifiying/measuring complexity in given systems, together with an introduction to information theory, has an expanded exercises and solutions section, and contains both revised and additional subsections.
Choose an application
This research addresses delay effects in nonlinear systems, which are ubiquitous in various fields of physics, chemistry, biology, engineering, and even in social and economic systems. They may arise as a result of processing times or due to the finite propagation speed of information between the constituents of a complex system. Time delay has two complementary, counterintuitive and almost contradictory facets. On the one hand, delay is able to induce instabilities, bifurcations of periodic and more complicated orbits, multi-stability and chaotic motion. On the other hand, it can suppress instabilities, stabilize unstable stationary or periodic states and may control complex chaotic dynamics. This thesis deals with both aspects, and presents novel fundamental results on the controllability of nonlinear dynamics by time-delayed feedback, as well as applications to lasers, hybrid-mechanical systems, and coupled neural systems.
Choose an application
At extremely low temperatures, clouds of bosonic atoms form what is known as a Bose-Einstein condensate. Recently, it has become clear that many different types of condensates -- so called fragmented condensates -- exist. In order to tell whether fragmentation occurs or not, it is necessary to solve the full many-body Schrödinger equation, a task that remained elusive for experimentally relevant conditions for many years. In this thesis the first numerically exact solutions of the time-dependent many-body Schrödinger equation for a bosonic Josephson junction are provided and compared to the approximate Gross-Pitaevskii and Bose-Hubbard theories. It is thereby shown that the dynamics of Bose-Einstein condensates is far more intricate than one would anticipate based on these approximations. A special conceptual innovation in this thesis are optimal lattice models. It is shown how all quantum lattice models of condensed matter physics that are based on Wannier functions, e.g. the Bose/Fermi Hubbard model, can be optimized variationally. This leads to exciting new physics.
Choose an application
Choose an application
This research addresses delay effects in nonlinear systems, which are ubiquitous in various fields of physics, chemistry, biology, engineering, and even in social and economic systems. They may arise as a result of processing times or due to the finite propagation speed of information between the constituents of a complex system. Time delay has two complementary, counterintuitive and almost contradictory facets. On the one hand, delay is able to induce instabilities, bifurcations of periodic and more complicated orbits, multi-stability and chaotic motion. On the other hand, it can suppress instabilities, stabilize unstable stationary or periodic states and may control complex chaotic dynamics. This thesis deals with both aspects, and presents novel fundamental results on the controllability of nonlinear dynamics by time-delayed feedback, as well as applications to lasers, hybrid-mechanical systems, and coupled neural systems.
Choose an application
Choose an application
This tenth volume in the Poincaré Seminar Series describes recent developments at one of the most challenging frontiers in statistical physics - the deeply related fields of glassy dynamics, especially near the glass transition, and of the statics and dynamics of granular systems. These fields are marked by a vigorous interchange between experiment, theory, and numerical studies, all of which are well represented by the leading experts who have contributed articles to this volume. These articles are also highly pedagogical, as befits their origin in lectures to a broad scientific audience. Highlights include a Galilean dialogue on the mean field and competing theories of the glass transition, a wide-ranging survey of colloidal glasses, and experimental as well as theoretical treatments of the relatively new field of dense granular flows. This book should be of broad general interest to both physicists and mathematicians.
Mathematics --- Statistical physics --- theoretische fysica --- wiskunde
Choose an application
Conformal invariance has been a spectacularly successful tool in advancing our understanding of the two-dimensional phase transitions found in classical systems at equilibrium. This volume sharpens our picture of the applications of conformal invariance, introducing non-local observables such as loops and interfaces before explaining how they arise in specific physical contexts. It then shows how to use conformal invariance to determine their properties. Moving on to cover key conceptual developments in conformal invariance, the book devotes much of its space to stochastic Loewner evolution (SLE), detailing SLE's conceptual foundations as well as extensive numerical tests. The chapters then elucidate SLE's use in geometric phase transitions such as percolation or polymer systems, paying particular attention to surface effects. As clear and accessible as it is authoritative, this publication is as suitable for non-specialist readers and graduate students alike.
Mathematical physics --- Statistical physics --- theoretische fysica --- wiskunde
Choose an application
Mathematical physics --- theoretische fysica --- wiskunde --- fysica
Choose an application
Mathematics --- Statistical physics --- theoretische fysica --- wiskunde
Listing 1 - 10 of 1299 | << page >> |
Sort by
|