Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Choose an application
The world steel industry is strongly based on coal/coke in ironmaking, resulting in huge carbon dioxide emissions corresponding to approximately 7% of the total anthropogenic CO2 emissions. As the world is experiencing a period of imminent threat owing to climate change, the steel industry is also facing a tremendous challenge in next decades. This themed issue makes a survey on the current situation of steel production, energy consumption, and CO2 emissions, as well as cross-sections of the potential methods to decrease CO2 emissions in current processes via improved energy and materials efficiency, increasing recycling, utilizing alternative energy sources, and adopting CO2 capture and storage. The current state, problems and plans in the two biggest steel producing countries, China and India are introduced. Generally contemplating, incremental improvements in current processes play a key role in rapid mitigation of specific emissions, but finally they are insufficient when striving for carbon neutral production in the long run. Then hydrogen and electrification are the apparent solutions also to iron and steel production. The book gives a holistic overview of the current situation and challenges, and an inclusive compilation of the potential technologies and solutions for the global CO2 emissions problem.
Technology: general issues --- ironmaking --- carbon emissions --- energy consumption --- flash ironmaking process --- alternate ironmaking processes --- direct reduction --- smelting reduction --- iron ore concentrate --- natural gas --- digitalization --- digital technologies --- digital transformation --- steel industry --- digital skills --- industrial restructuring --- carbon emission --- technology upgrade --- steel --- environment --- mining --- production --- circular economy --- lean and frugal design --- ecology transition --- climate change --- pollution --- toxicology --- metals --- metallic products --- environmental impact --- carbon capture and storage --- CO2 mineralization --- steelmaking slags --- nanoparticles --- life cycle assessment (LCA) --- by-products --- industrial symbiosis --- reuse --- recycling --- CO2 mitigation --- hydrogen --- kinetics --- fossil-free steel --- hydrogen direct-reduced iron (H2DRI) --- melting of H2DRI in EAF (Electric Arc Furnace) --- hydrogen production by water electrolysis --- hydrogen storage --- grid balancing --- renewable electricity --- climate warming --- carbon footprint --- energy saving --- emissions mitigation --- electricity generation --- hydrogen in steelmaking --- steel vision --- mini blast furnace --- charcoal --- mathematical model --- gas injection --- kinetic models --- self-reducing burden --- iron ore --- coking coal --- DRI --- scrap --- blue dust --- decarbonization --- n/a
Choose an application
The world steel industry is strongly based on coal/coke in ironmaking, resulting in huge carbon dioxide emissions corresponding to approximately 7% of the total anthropogenic CO2 emissions. As the world is experiencing a period of imminent threat owing to climate change, the steel industry is also facing a tremendous challenge in next decades. This themed issue makes a survey on the current situation of steel production, energy consumption, and CO2 emissions, as well as cross-sections of the potential methods to decrease CO2 emissions in current processes via improved energy and materials efficiency, increasing recycling, utilizing alternative energy sources, and adopting CO2 capture and storage. The current state, problems and plans in the two biggest steel producing countries, China and India are introduced. Generally contemplating, incremental improvements in current processes play a key role in rapid mitigation of specific emissions, but finally they are insufficient when striving for carbon neutral production in the long run. Then hydrogen and electrification are the apparent solutions also to iron and steel production. The book gives a holistic overview of the current situation and challenges, and an inclusive compilation of the potential technologies and solutions for the global CO2 emissions problem.
ironmaking --- carbon emissions --- energy consumption --- flash ironmaking process --- alternate ironmaking processes --- direct reduction --- smelting reduction --- iron ore concentrate --- natural gas --- digitalization --- digital technologies --- digital transformation --- steel industry --- digital skills --- industrial restructuring --- carbon emission --- technology upgrade --- steel --- environment --- mining --- production --- circular economy --- lean and frugal design --- ecology transition --- climate change --- pollution --- toxicology --- metals --- metallic products --- environmental impact --- carbon capture and storage --- CO2 mineralization --- steelmaking slags --- nanoparticles --- life cycle assessment (LCA) --- by-products --- industrial symbiosis --- reuse --- recycling --- CO2 mitigation --- hydrogen --- kinetics --- fossil-free steel --- hydrogen direct-reduced iron (H2DRI) --- melting of H2DRI in EAF (Electric Arc Furnace) --- hydrogen production by water electrolysis --- hydrogen storage --- grid balancing --- renewable electricity --- climate warming --- carbon footprint --- energy saving --- emissions mitigation --- electricity generation --- hydrogen in steelmaking --- steel vision --- mini blast furnace --- charcoal --- mathematical model --- gas injection --- kinetic models --- self-reducing burden --- iron ore --- coking coal --- DRI --- scrap --- blue dust --- decarbonization --- n/a
Choose an application
The world steel industry is strongly based on coal/coke in ironmaking, resulting in huge carbon dioxide emissions corresponding to approximately 7% of the total anthropogenic CO2 emissions. As the world is experiencing a period of imminent threat owing to climate change, the steel industry is also facing a tremendous challenge in next decades. This themed issue makes a survey on the current situation of steel production, energy consumption, and CO2 emissions, as well as cross-sections of the potential methods to decrease CO2 emissions in current processes via improved energy and materials efficiency, increasing recycling, utilizing alternative energy sources, and adopting CO2 capture and storage. The current state, problems and plans in the two biggest steel producing countries, China and India are introduced. Generally contemplating, incremental improvements in current processes play a key role in rapid mitigation of specific emissions, but finally they are insufficient when striving for carbon neutral production in the long run. Then hydrogen and electrification are the apparent solutions also to iron and steel production. The book gives a holistic overview of the current situation and challenges, and an inclusive compilation of the potential technologies and solutions for the global CO2 emissions problem.
Technology: general issues --- ironmaking --- carbon emissions --- energy consumption --- flash ironmaking process --- alternate ironmaking processes --- direct reduction --- smelting reduction --- iron ore concentrate --- natural gas --- digitalization --- digital technologies --- digital transformation --- steel industry --- digital skills --- industrial restructuring --- carbon emission --- technology upgrade --- steel --- environment --- mining --- production --- circular economy --- lean and frugal design --- ecology transition --- climate change --- pollution --- toxicology --- metals --- metallic products --- environmental impact --- carbon capture and storage --- CO2 mineralization --- steelmaking slags --- nanoparticles --- life cycle assessment (LCA) --- by-products --- industrial symbiosis --- reuse --- recycling --- CO2 mitigation --- hydrogen --- kinetics --- fossil-free steel --- hydrogen direct-reduced iron (H2DRI) --- melting of H2DRI in EAF (Electric Arc Furnace) --- hydrogen production by water electrolysis --- hydrogen storage --- grid balancing --- renewable electricity --- climate warming --- carbon footprint --- energy saving --- emissions mitigation --- electricity generation --- hydrogen in steelmaking --- steel vision --- mini blast furnace --- charcoal --- mathematical model --- gas injection --- kinetic models --- self-reducing burden --- iron ore --- coking coal --- DRI --- scrap --- blue dust --- decarbonization --- ironmaking --- carbon emissions --- energy consumption --- flash ironmaking process --- alternate ironmaking processes --- direct reduction --- smelting reduction --- iron ore concentrate --- natural gas --- digitalization --- digital technologies --- digital transformation --- steel industry --- digital skills --- industrial restructuring --- carbon emission --- technology upgrade --- steel --- environment --- mining --- production --- circular economy --- lean and frugal design --- ecology transition --- climate change --- pollution --- toxicology --- metals --- metallic products --- environmental impact --- carbon capture and storage --- CO2 mineralization --- steelmaking slags --- nanoparticles --- life cycle assessment (LCA) --- by-products --- industrial symbiosis --- reuse --- recycling --- CO2 mitigation --- hydrogen --- kinetics --- fossil-free steel --- hydrogen direct-reduced iron (H2DRI) --- melting of H2DRI in EAF (Electric Arc Furnace) --- hydrogen production by water electrolysis --- hydrogen storage --- grid balancing --- renewable electricity --- climate warming --- carbon footprint --- energy saving --- emissions mitigation --- electricity generation --- hydrogen in steelmaking --- steel vision --- mini blast furnace --- charcoal --- mathematical model --- gas injection --- kinetic models --- self-reducing burden --- iron ore --- coking coal --- DRI --- scrap --- blue dust --- decarbonization
Choose an application
Steel is a critical material in our societies and will remain an important one for a long time into the future. In the last two decades, the world steel industry has gone through drastic changes and this is predicted to continue in the future. The Asian countries (e.g. China, India) have been dominant in the production of steel creating global over-capacity, while the steel industry in the developed countries have made tremendous efforts to reinforce its global leadership in process technology and product development, and remain sustainable and competitive. The global steel industry is also facing various grand challenges in strict environmental regulation, new energy and materials sources, and ever-increasing customer requirements for high quality steel products, which has been addressed accordingly by the global iron and steel community. This Special Issue, “Ironmaking and Steelmaking”, released by the journal Metals, published 33 high quality articles from the international iron and steel community, covering the state-of-the-art of the ironmaking and steelmaking processes. This includes fundamental understanding, experimental investigation, pilot plant trials, industrial applications and big data utilization in the improvement and optimization of existing processes, and research and development in transformative technologies. It is hoped that the creation of this special issue as a scientific platform will help drive the iron and steel community to build a sustainable steel industry.
artificial neural network --- n/a --- corrosion --- inclusion control --- steel-making --- simulation --- liquid steel --- phosphate capacity --- slag --- hydrogen --- TG analysis --- surface roughness --- iron sulfate --- shot peening --- refining kinetics --- iso-conversional method --- oxygen blast furnace --- Barkhausen noise --- gas flow rate --- ductile cast iron --- toughness --- self-reduction briquette --- Mg deoxidation --- phosphorus distribution ratio --- iron oxides --- phase analysis --- desiliconisation --- solid flow --- CaO/Al2O3 ratio --- surface depression --- carbothermal reduction --- rotary hearth furnace --- torrefied biomass --- hot metal pre-treatment --- inclusions --- microwaves --- ironmaking --- reactivity --- CaO–based slags --- high-aluminum iron ore --- oxides --- HPSR --- internal crack --- fluorapatite --- crystallization rate --- COREX --- liquid area --- Al addition --- Wilcox–Swailes coefficient --- plasma arc --- evaluation of coupling relationship --- penetration theory --- silicate crystals --- ionization degree --- pellet size --- prediction model --- continuous casting --- direct element method --- modified NPL model --- slag film --- volatile matter --- crystallite size --- Al-TRIP steel --- viscosity --- anosovite crystals --- slag formation --- CO2 emissions --- integrated steel plant --- flow pattern --- high-heat-input welding --- dephosphorisation --- copper stave --- direct reduction --- shrinkage --- Cr recovery --- chemical composition --- high speed steel --- material flow --- 33MnCrTiB --- gas-based reduction --- converter --- bio-coal --- flat steel --- sulfur distribution ratio --- cold experiment --- secondary refining process --- re-oxidation --- vaporization dephosphorization --- sulfide capacity --- electroslag cladding --- hydrogen attack --- oxygen steelmaking --- non-metallic inclusions --- cracks --- non-contact measurement --- energy consumption --- high-manganese iron ore --- non-metallic inclusion --- Ca deoxidation --- Ca-treatment --- compressive strength (CS) --- oil-pipeline steel --- thermal treatment --- carbon monoxide --- composite roll --- crystallization behaviors --- devolatilization --- carbon-saturated iron --- steelmaking factory --- slag crust --- combustion --- high heat input welding --- ore-carbon briquette --- activation energy --- flow velocity --- kinetics --- hydrogen plasma --- casting speed --- solid and gaseous oxygen --- hercynite --- low fluorine --- iron ore pellets --- fayalite --- heat-affected zone --- CO–CO2 atmosphere --- and nitrogen --- smelting reduction --- high-phosphorus iron ore --- iron oxide --- mold flux --- BaO --- intragranular acicular ferrite --- carbon composite pellet --- electrolytic extraction --- iron ore --- carbon dioxide --- agglomerate --- vanadium titano-magnetite --- emission spectrum --- static process model --- concentrate --- structure --- titanium slag --- bonding interface --- fork --- blast furnace --- reaction mechanism --- reduction --- synergistic reduction --- injection --- principal component analysis --- ultrafine particles exposure --- CaO-based slags --- Wilcox-Swailes coefficient --- CO-CO2 atmosphere
Choose an application
The Special Issue presents almost 40 papers on recent research in modeling of pyrometallurgical systems, including physical models, first-principles models, detailed CFD and DEM models as well as statistical models or models based on machine learning. The models cover the whole production chain from raw materials processing through the reduction and conversion unit processes to ladle treatment, casting, and rolling. The papers illustrate how models can be used for shedding light on complex and inaccessible processes characterized by high temperatures and hostile environment, in order to improve process performance, product quality, or yield and to reduce the requirements of virgin raw materials and to suppress harmful emissions.
Technology: general issues --- steelmaking --- oxygen consumption --- GPR --- prediction model --- secondary refining --- water model --- mixing time --- slag entrapment --- stainless steel slag --- heating time --- Cr2O3 --- spinel --- crystal size --- processing maps --- nickel-based alloy --- flow behavior --- arrhenius equation --- hearth --- drainage --- PCA --- analysis tool --- pattern --- tapholes --- blast furnace --- coke --- carbon solution loss --- numerical simulation --- pellet pile --- Discrete Element Method --- porosity distribution --- angle of repose --- coordination number --- bubble motion --- interfacial phenomena --- entrainment --- moving path --- arsenopyrite --- arsenic removal --- mechanism --- roasting --- arsenate --- dust ash --- arsenic recovery --- titanium distribution ratio --- thermodynamic model --- ion–molecule coexistence theory --- LF refining slags --- electric arc furnace --- simulation --- process model --- COREX --- raceway zone --- gas flow --- COREX melter gasifier --- mixed charging --- burden layer structure --- burden pile width --- DEM --- burden distribution --- particle flow --- validation --- tire cord steel --- TiN inclusion --- solidification --- segregation models --- hot rolling --- TOU electricity pricing --- hot rolling planning --- genetic algorithm --- C-H2 smelting reduction furnace --- double-row side nozzles --- dimensional analysis --- multiple linear regression --- ironmaking blast furnace --- coke bed --- trickle flow --- molten slag --- liquid iron --- SPH --- charging system --- mathematical model --- radar data --- main trough --- transient fluid of hot metal and molten slag --- wall shear stress --- conjugate heat transfer --- refractory --- shape rolling --- flat rolling --- wire rod --- temperature distribution --- machine learning --- artificial intelligence --- neural network --- BOS reactor --- copper smelting --- SKS --- Shuikoushan process --- oxygen bottom blown --- gated recurrent unit --- support vector data description --- time sequence prediction --- fault detection and identification --- Lignite --- microwave and ultrasound modification --- structural characterization --- 3D molecular model --- structural simulation --- coke combustion rate --- charcoal combustion rate --- iron ore sintering process --- biomass --- quasi-particle --- quasi-particle structure --- monomer blended fuel --- quasi-particle fuel --- apparent activation energy --- coupling effect --- dynamic model --- basic oxygen furnace --- computational fluid dynamics --- CFD–DEM --- coalescence --- settling --- funneling flow --- horizontal single belt casting process (HSBC) --- computational fluid dynamics (CFD) --- double impingement feeding system --- supersonic coherent jet --- decarburization --- steel refining --- EAF --- CFD --- mass transfer coefficient --- physical modeling --- mathematical modeling --- kinetic models --- natural gas --- fuel injection --- combustion --- RAFT --- roll design --- flat-rolled wire --- strain inhomogeneity --- normal pressure --- macroscopic shear bands --- numerical model --- dual gas injection --- slag eye --- electrical energy consumption --- Electric Arc Furnace --- scrap melting --- statistical modeling --- raceway evolution --- raceway size --- flow pattern --- Eulerian multiphase flow --- blast furnace hearth --- dead man --- iron and slag flow --- lining wear --- hearth drainage --- Industry 4.0 --- copper smelter --- nickel-copper smelter --- radiometric sensors --- Peirce-smith converting --- matte-slag chemistry --- discrete event simulation --- adaptive finite differences --- n/a --- ion-molecule coexistence theory --- CFD-DEM
Choose an application
The Special Issue presents almost 40 papers on recent research in modeling of pyrometallurgical systems, including physical models, first-principles models, detailed CFD and DEM models as well as statistical models or models based on machine learning. The models cover the whole production chain from raw materials processing through the reduction and conversion unit processes to ladle treatment, casting, and rolling. The papers illustrate how models can be used for shedding light on complex and inaccessible processes characterized by high temperatures and hostile environment, in order to improve process performance, product quality, or yield and to reduce the requirements of virgin raw materials and to suppress harmful emissions.
steelmaking --- oxygen consumption --- GPR --- prediction model --- secondary refining --- water model --- mixing time --- slag entrapment --- stainless steel slag --- heating time --- Cr2O3 --- spinel --- crystal size --- processing maps --- nickel-based alloy --- flow behavior --- arrhenius equation --- hearth --- drainage --- PCA --- analysis tool --- pattern --- tapholes --- blast furnace --- coke --- carbon solution loss --- numerical simulation --- pellet pile --- Discrete Element Method --- porosity distribution --- angle of repose --- coordination number --- bubble motion --- interfacial phenomena --- entrainment --- moving path --- arsenopyrite --- arsenic removal --- mechanism --- roasting --- arsenate --- dust ash --- arsenic recovery --- titanium distribution ratio --- thermodynamic model --- ion–molecule coexistence theory --- LF refining slags --- electric arc furnace --- simulation --- process model --- COREX --- raceway zone --- gas flow --- COREX melter gasifier --- mixed charging --- burden layer structure --- burden pile width --- DEM --- burden distribution --- particle flow --- validation --- tire cord steel --- TiN inclusion --- solidification --- segregation models --- hot rolling --- TOU electricity pricing --- hot rolling planning --- genetic algorithm --- C-H2 smelting reduction furnace --- double-row side nozzles --- dimensional analysis --- multiple linear regression --- ironmaking blast furnace --- coke bed --- trickle flow --- molten slag --- liquid iron --- SPH --- charging system --- mathematical model --- radar data --- main trough --- transient fluid of hot metal and molten slag --- wall shear stress --- conjugate heat transfer --- refractory --- shape rolling --- flat rolling --- wire rod --- temperature distribution --- machine learning --- artificial intelligence --- neural network --- BOS reactor --- copper smelting --- SKS --- Shuikoushan process --- oxygen bottom blown --- gated recurrent unit --- support vector data description --- time sequence prediction --- fault detection and identification --- Lignite --- microwave and ultrasound modification --- structural characterization --- 3D molecular model --- structural simulation --- coke combustion rate --- charcoal combustion rate --- iron ore sintering process --- biomass --- quasi-particle --- quasi-particle structure --- monomer blended fuel --- quasi-particle fuel --- apparent activation energy --- coupling effect --- dynamic model --- basic oxygen furnace --- computational fluid dynamics --- CFD–DEM --- coalescence --- settling --- funneling flow --- horizontal single belt casting process (HSBC) --- computational fluid dynamics (CFD) --- double impingement feeding system --- supersonic coherent jet --- decarburization --- steel refining --- EAF --- CFD --- mass transfer coefficient --- physical modeling --- mathematical modeling --- kinetic models --- natural gas --- fuel injection --- combustion --- RAFT --- roll design --- flat-rolled wire --- strain inhomogeneity --- normal pressure --- macroscopic shear bands --- numerical model --- dual gas injection --- slag eye --- electrical energy consumption --- Electric Arc Furnace --- scrap melting --- statistical modeling --- raceway evolution --- raceway size --- flow pattern --- Eulerian multiphase flow --- blast furnace hearth --- dead man --- iron and slag flow --- lining wear --- hearth drainage --- Industry 4.0 --- copper smelter --- nickel-copper smelter --- radiometric sensors --- Peirce-smith converting --- matte-slag chemistry --- discrete event simulation --- adaptive finite differences --- n/a --- ion-molecule coexistence theory --- CFD-DEM
Choose an application
The Special Issue presents almost 40 papers on recent research in modeling of pyrometallurgical systems, including physical models, first-principles models, detailed CFD and DEM models as well as statistical models or models based on machine learning. The models cover the whole production chain from raw materials processing through the reduction and conversion unit processes to ladle treatment, casting, and rolling. The papers illustrate how models can be used for shedding light on complex and inaccessible processes characterized by high temperatures and hostile environment, in order to improve process performance, product quality, or yield and to reduce the requirements of virgin raw materials and to suppress harmful emissions.
Technology: general issues --- steelmaking --- oxygen consumption --- GPR --- prediction model --- secondary refining --- water model --- mixing time --- slag entrapment --- stainless steel slag --- heating time --- Cr2O3 --- spinel --- crystal size --- processing maps --- nickel-based alloy --- flow behavior --- arrhenius equation --- hearth --- drainage --- PCA --- analysis tool --- pattern --- tapholes --- blast furnace --- coke --- carbon solution loss --- numerical simulation --- pellet pile --- Discrete Element Method --- porosity distribution --- angle of repose --- coordination number --- bubble motion --- interfacial phenomena --- entrainment --- moving path --- arsenopyrite --- arsenic removal --- mechanism --- roasting --- arsenate --- dust ash --- arsenic recovery --- titanium distribution ratio --- thermodynamic model --- ion-molecule coexistence theory --- LF refining slags --- electric arc furnace --- simulation --- process model --- COREX --- raceway zone --- gas flow --- COREX melter gasifier --- mixed charging --- burden layer structure --- burden pile width --- DEM --- burden distribution --- particle flow --- validation --- tire cord steel --- TiN inclusion --- solidification --- segregation models --- hot rolling --- TOU electricity pricing --- hot rolling planning --- genetic algorithm --- C-H2 smelting reduction furnace --- double-row side nozzles --- dimensional analysis --- multiple linear regression --- ironmaking blast furnace --- coke bed --- trickle flow --- molten slag --- liquid iron --- SPH --- charging system --- mathematical model --- radar data --- main trough --- transient fluid of hot metal and molten slag --- wall shear stress --- conjugate heat transfer --- refractory --- shape rolling --- flat rolling --- wire rod --- temperature distribution --- machine learning --- artificial intelligence --- neural network --- BOS reactor --- copper smelting --- SKS --- Shuikoushan process --- oxygen bottom blown --- gated recurrent unit --- support vector data description --- time sequence prediction --- fault detection and identification --- Lignite --- microwave and ultrasound modification --- structural characterization --- 3D molecular model --- structural simulation --- coke combustion rate --- charcoal combustion rate --- iron ore sintering process --- biomass --- quasi-particle --- quasi-particle structure --- monomer blended fuel --- quasi-particle fuel --- apparent activation energy --- coupling effect --- dynamic model --- basic oxygen furnace --- computational fluid dynamics --- CFD-DEM --- coalescence --- settling --- funneling flow --- horizontal single belt casting process (HSBC) --- computational fluid dynamics (CFD) --- double impingement feeding system --- supersonic coherent jet --- decarburization --- steel refining --- EAF --- CFD --- mass transfer coefficient --- physical modeling --- mathematical modeling --- kinetic models --- natural gas --- fuel injection --- combustion --- RAFT --- roll design --- flat-rolled wire --- strain inhomogeneity --- normal pressure --- macroscopic shear bands --- numerical model --- dual gas injection --- slag eye --- electrical energy consumption --- Electric Arc Furnace --- scrap melting --- statistical modeling --- raceway evolution --- raceway size --- flow pattern --- Eulerian multiphase flow --- blast furnace hearth --- dead man --- iron and slag flow --- lining wear --- hearth drainage --- Industry 4.0 --- copper smelter --- nickel-copper smelter --- radiometric sensors --- Peirce-smith converting --- matte-slag chemistry --- discrete event simulation --- adaptive finite differences --- steelmaking --- oxygen consumption --- GPR --- prediction model --- secondary refining --- water model --- mixing time --- slag entrapment --- stainless steel slag --- heating time --- Cr2O3 --- spinel --- crystal size --- processing maps --- nickel-based alloy --- flow behavior --- arrhenius equation --- hearth --- drainage --- PCA --- analysis tool --- pattern --- tapholes --- blast furnace --- coke --- carbon solution loss --- numerical simulation --- pellet pile --- Discrete Element Method --- porosity distribution --- angle of repose --- coordination number --- bubble motion --- interfacial phenomena --- entrainment --- moving path --- arsenopyrite --- arsenic removal --- mechanism --- roasting --- arsenate --- dust ash --- arsenic recovery --- titanium distribution ratio --- thermodynamic model --- ion-molecule coexistence theory --- LF refining slags --- electric arc furnace --- simulation --- process model --- COREX --- raceway zone --- gas flow --- COREX melter gasifier --- mixed charging --- burden layer structure --- burden pile width --- DEM --- burden distribution --- particle flow --- validation --- tire cord steel --- TiN inclusion --- solidification --- segregation models --- hot rolling --- TOU electricity pricing --- hot rolling planning --- genetic algorithm --- C-H2 smelting reduction furnace --- double-row side nozzles --- dimensional analysis --- multiple linear regression --- ironmaking blast furnace --- coke bed --- trickle flow --- molten slag --- liquid iron --- SPH --- charging system --- mathematical model --- radar data --- main trough --- transient fluid of hot metal and molten slag --- wall shear stress --- conjugate heat transfer --- refractory --- shape rolling --- flat rolling --- wire rod --- temperature distribution --- machine learning --- artificial intelligence --- neural network --- BOS reactor --- copper smelting --- SKS --- Shuikoushan process --- oxygen bottom blown --- gated recurrent unit --- support vector data description --- time sequence prediction --- fault detection and identification --- Lignite --- microwave and ultrasound modification --- structural characterization --- 3D molecular model --- structural simulation --- coke combustion rate --- charcoal combustion rate --- iron ore sintering process --- biomass --- quasi-particle --- quasi-particle structure --- monomer blended fuel --- quasi-particle fuel --- apparent activation energy --- coupling effect --- dynamic model --- basic oxygen furnace --- computational fluid dynamics --- CFD-DEM --- coalescence --- settling --- funneling flow --- horizontal single belt casting process (HSBC) --- computational fluid dynamics (CFD) --- double impingement feeding system --- supersonic coherent jet --- decarburization --- steel refining --- EAF --- CFD --- mass transfer coefficient --- physical modeling --- mathematical modeling --- kinetic models --- natural gas --- fuel injection --- combustion --- RAFT --- roll design --- flat-rolled wire --- strain inhomogeneity --- normal pressure --- macroscopic shear bands --- numerical model --- dual gas injection --- slag eye --- electrical energy consumption --- Electric Arc Furnace --- scrap melting --- statistical modeling --- raceway evolution --- raceway size --- flow pattern --- Eulerian multiphase flow --- blast furnace hearth --- dead man --- iron and slag flow --- lining wear --- hearth drainage --- Industry 4.0 --- copper smelter --- nickel-copper smelter --- radiometric sensors --- Peirce-smith converting --- matte-slag chemistry --- discrete event simulation --- adaptive finite differences
Listing 1 - 8 of 8 |
Sort by
|