Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2020 (6)

Listing 1 - 6 of 6
Sort by

Book
Test and Evaluation Methods for Human-Machine Interfaces of Automated Vehicles
Authors: --- --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book summarizes the latest developments in the area of human factors test and evaluation methods for automated vehicles. Future vehicles will allow a transition of responsibility from the driver to the automated driving system and vice versa. Drivers will have the opportunity to use a wide variety of different driver assistance systems within the same vehicle. This coexistence of different automation levels creates new challenges in the design of the vehicle’s human–machine interface (HMI), which have to be accounted for by human factors experts, both in industrial design and in academia. This book brings together the latest developments, empirical evaluations and guidelines on various topics, such as the design and evaluation of interior as well as exterior HMIs for automated vehicles, and the assessment of the impact of automated vehicles on non-automated road users and driver state assessment (e.g., fatigue, motion sickness, fallback readiness) during automated driving.

Keywords

History of engineering & technology --- virtual reality --- automated driving --- pedestrians --- decision making --- crossing --- eHMI --- eye-tracking --- attention distribution --- road safety --- driverless vehicles --- behavioural adaptation --- SAE L3 motorway chauffeur --- system usage --- acceptance --- attention --- secondary task --- highly automated driving --- HAD --- takeover --- conditional automation --- intelligent vehicles --- objective complexity --- subjective complexity --- familiarity --- cognitive assistance --- takeover quality --- standardized test procedure --- use cases --- test protocol --- Adaptive HMI --- automotive user interfaces --- driver behaviour --- automated vehicles --- automated driving systems --- HMI --- guidelines --- heuristic evaluation --- checklist --- expert evaluation --- human-machine interface --- mode awareness --- conditionally automated driving --- human–machine interface --- usability --- validity --- method development --- motion sickness --- methodology --- driving comfort --- multi-vehicle simulation --- mixed traffic --- measurement method --- SAE Level 2 --- SAE Level 3 --- human factors --- human machine interface --- controllability --- L3Pilot --- marking automated vehicles --- automated vehicles―human drivers interaction --- explicit communication --- external human-machine interface --- (automated) vehicle–pedestrian interaction --- implicit communication --- Wizard of Oz --- video --- setup comparison/method comparison --- partially automated driving --- non-driving related tasks --- take-over situations --- test protocol development --- user studies (simulator --- closed circuit) --- sleep --- sleep inertia --- HMI design --- external human–machine interface --- interface size --- legibility --- spatiotemporal displays --- sensory augmentation --- reliability display --- uncertainty encoding --- automotive hmi --- human-machine cooperation --- cooperative driver assistance --- state transparency display --- self-driving vehicles --- test methods --- evaluation --- user studies --- driver state --- discomfort --- psychophysiology --- heart-rate variability (HRV) --- skin conductance response (SCR) --- highly automated driving (HAD)


Book
Test and Evaluation Methods for Human-Machine Interfaces of Automated Vehicles
Authors: --- --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book summarizes the latest developments in the area of human factors test and evaluation methods for automated vehicles. Future vehicles will allow a transition of responsibility from the driver to the automated driving system and vice versa. Drivers will have the opportunity to use a wide variety of different driver assistance systems within the same vehicle. This coexistence of different automation levels creates new challenges in the design of the vehicle’s human–machine interface (HMI), which have to be accounted for by human factors experts, both in industrial design and in academia. This book brings together the latest developments, empirical evaluations and guidelines on various topics, such as the design and evaluation of interior as well as exterior HMIs for automated vehicles, and the assessment of the impact of automated vehicles on non-automated road users and driver state assessment (e.g., fatigue, motion sickness, fallback readiness) during automated driving.

Keywords

virtual reality --- automated driving --- pedestrians --- decision making --- crossing --- eHMI --- eye-tracking --- attention distribution --- road safety --- driverless vehicles --- behavioural adaptation --- SAE L3 motorway chauffeur --- system usage --- acceptance --- attention --- secondary task --- highly automated driving --- HAD --- takeover --- conditional automation --- intelligent vehicles --- objective complexity --- subjective complexity --- familiarity --- cognitive assistance --- takeover quality --- standardized test procedure --- use cases --- test protocol --- Adaptive HMI --- automotive user interfaces --- driver behaviour --- automated vehicles --- automated driving systems --- HMI --- guidelines --- heuristic evaluation --- checklist --- expert evaluation --- human-machine interface --- mode awareness --- conditionally automated driving --- human–machine interface --- usability --- validity --- method development --- motion sickness --- methodology --- driving comfort --- multi-vehicle simulation --- mixed traffic --- measurement method --- SAE Level 2 --- SAE Level 3 --- human factors --- human machine interface --- controllability --- L3Pilot --- marking automated vehicles --- automated vehicles―human drivers interaction --- explicit communication --- external human-machine interface --- (automated) vehicle–pedestrian interaction --- implicit communication --- Wizard of Oz --- video --- setup comparison/method comparison --- partially automated driving --- non-driving related tasks --- take-over situations --- test protocol development --- user studies (simulator --- closed circuit) --- sleep --- sleep inertia --- HMI design --- external human–machine interface --- interface size --- legibility --- spatiotemporal displays --- sensory augmentation --- reliability display --- uncertainty encoding --- automotive hmi --- human-machine cooperation --- cooperative driver assistance --- state transparency display --- self-driving vehicles --- test methods --- evaluation --- user studies --- driver state --- discomfort --- psychophysiology --- heart-rate variability (HRV) --- skin conductance response (SCR) --- highly automated driving (HAD)


Book
Test and Evaluation Methods for Human-Machine Interfaces of Automated Vehicles
Authors: --- --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book summarizes the latest developments in the area of human factors test and evaluation methods for automated vehicles. Future vehicles will allow a transition of responsibility from the driver to the automated driving system and vice versa. Drivers will have the opportunity to use a wide variety of different driver assistance systems within the same vehicle. This coexistence of different automation levels creates new challenges in the design of the vehicle’s human–machine interface (HMI), which have to be accounted for by human factors experts, both in industrial design and in academia. This book brings together the latest developments, empirical evaluations and guidelines on various topics, such as the design and evaluation of interior as well as exterior HMIs for automated vehicles, and the assessment of the impact of automated vehicles on non-automated road users and driver state assessment (e.g., fatigue, motion sickness, fallback readiness) during automated driving.

Keywords

History of engineering & technology --- virtual reality --- automated driving --- pedestrians --- decision making --- crossing --- eHMI --- eye-tracking --- attention distribution --- road safety --- driverless vehicles --- behavioural adaptation --- SAE L3 motorway chauffeur --- system usage --- acceptance --- attention --- secondary task --- highly automated driving --- HAD --- takeover --- conditional automation --- intelligent vehicles --- objective complexity --- subjective complexity --- familiarity --- cognitive assistance --- takeover quality --- standardized test procedure --- use cases --- test protocol --- Adaptive HMI --- automotive user interfaces --- driver behaviour --- automated vehicles --- automated driving systems --- HMI --- guidelines --- heuristic evaluation --- checklist --- expert evaluation --- human-machine interface --- mode awareness --- conditionally automated driving --- human–machine interface --- usability --- validity --- method development --- motion sickness --- methodology --- driving comfort --- multi-vehicle simulation --- mixed traffic --- measurement method --- SAE Level 2 --- SAE Level 3 --- human factors --- human machine interface --- controllability --- L3Pilot --- marking automated vehicles --- automated vehicles―human drivers interaction --- explicit communication --- external human-machine interface --- (automated) vehicle–pedestrian interaction --- implicit communication --- Wizard of Oz --- video --- setup comparison/method comparison --- partially automated driving --- non-driving related tasks --- take-over situations --- test protocol development --- user studies (simulator --- closed circuit) --- sleep --- sleep inertia --- HMI design --- external human–machine interface --- interface size --- legibility --- spatiotemporal displays --- sensory augmentation --- reliability display --- uncertainty encoding --- automotive hmi --- human-machine cooperation --- cooperative driver assistance --- state transparency display --- self-driving vehicles --- test methods --- evaluation --- user studies --- driver state --- discomfort --- psychophysiology --- heart-rate variability (HRV) --- skin conductance response (SCR) --- highly automated driving (HAD)


Book
Intelligent Vehicles
Authors: --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the results of the successful Sensors Special Issue on Intelligent Vehicles that received submissions between March 2019 and May 2020. The Guest Editors of this Special Issue are Dr. David Fernández-Llorca, Dr. Ignacio Parra-Alonso, Dr. Iván García-Daza and Dr. Noelia Parra-Alonso, all from the Computer Engineering Department at the University of Alcalá (Madrid, Spain). A total of 32 manuscripts were finally accepted between 2019 and 2020, presented by top researchers from all over the world. The reader will find a well-representative set of current research and developments related to sensors and sensing for intelligent vehicles. The topics of the published manuscripts can be grouped into seven main categories: (1) assistance systems and automatic vehicle operation, (2) vehicle positioning and localization, (3) fault diagnosis and fail-x systems, (4) perception and scene understanding, (5) smart regenerative braking systems for electric vehicles, (6) driver behavior modeling and (7) intelligent sensing. We, the Guest Editors, hope that the readers will find this book to contain interesting papers for their research, papers that they will enjoy reading as much as we have enjoyed organizing this Special Issue

Keywords

History of engineering & technology --- tracking-by-detection --- multi-vehicle tracking --- Siamese network --- data association --- Markov decision process --- driving behavior --- real-time monitoring --- driver distraction --- mobile application --- portable system --- simulation test --- dynamic driving behavior --- traffic scene augmentation --- corridor model --- IMU --- vision --- classification networks --- Hough transform --- lane markings detection --- semantic segmentation --- transfer learning --- autonomous --- off-road driving --- tire-road forces estimation --- slip angle estimation --- gauge sensors --- fuzzy logic system --- load transfer estimation --- simulation results --- normalization --- lateral force empirical model --- driver monitor --- lane departure --- statistical process control --- fault detection --- sensor fault --- signal restoration --- intelligent vehicle --- autonomous vehicle --- kinematic model --- visual SLAM --- sparse direct method --- photometric calibration --- corner detection and filtering --- loop closure detection --- road friction coefficient --- tire model --- nonlinear observer --- self-aligning torque --- lateral displacement --- Lyapunov method --- automatic parking system (APS) --- end-to-end parking --- reinforcement learning --- parking slot tracking --- deceleration planning --- multi-layer perceptron --- smart regenerative braking --- electric vehicles --- vehicle speed prediction --- driver behavior modeling --- electric vehicle control --- driver characteristics online learning --- objects’ edge detection --- stixel histograms accumulate --- point cloud segmentation --- autonomous vehicles --- scene understanding --- occlusion reasoning --- road detection --- advanced driver assistance system --- trajectory prediction --- risk assessment --- collision warning --- connected vehicles --- vehicular communications --- vulnerable road users --- fail-operational systems --- fall-back strategy --- automated driving --- advanced driving assistance systems --- illumination --- shadow detection --- shadow edge --- image processing --- traffic light detection --- intelligent transportation system --- lane-changing --- merging maneuvers --- game theory --- decision-making --- intelligent vehicles --- model predictive controller --- automatic train operation --- softness factor --- fusion velocity --- online obtaining --- hardware-in-the-loop simulation --- driving assistant --- driving diagnosis --- accident risk maps --- driving safety --- intelligent driving --- virtual test environment --- millimeter wave radar --- lane-change decision --- risk perception --- mixed traffic --- minimum safe deceleration --- automated driving system (ADS) --- sensor fusion --- multi-lane detection --- particle filter --- self-driving car --- unscented Kalman filter --- vehicle model --- Monte Carlo localization --- millimeter-wave radar --- square-root cubature Kalman filter --- Sage-Husa algorithm --- target tracking --- stationary and moving object classification --- localization --- LiDAR --- GNSS --- Global Positioning System (GPS) --- monte carlo --- autonomous driving --- robot motion --- path planning --- piecewise linear approximation --- multiple-target path planning --- autonomous mobile robot --- homotopy based path planning --- LiDAR signal processing --- sensor and information fusion --- advanced driver assistance systems --- autonomous racing --- high-speed camera --- real-time systems --- LiDAR odometry --- fail-aware --- sensors --- sensing --- percepction --- object detection and tracking --- scene segmentation --- vehicle positioning --- fail-x systems --- driver behavior modelling --- automatic operation


Book
Intelligent Vehicles
Authors: --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the results of the successful Sensors Special Issue on Intelligent Vehicles that received submissions between March 2019 and May 2020. The Guest Editors of this Special Issue are Dr. David Fernández-Llorca, Dr. Ignacio Parra-Alonso, Dr. Iván García-Daza and Dr. Noelia Parra-Alonso, all from the Computer Engineering Department at the University of Alcalá (Madrid, Spain). A total of 32 manuscripts were finally accepted between 2019 and 2020, presented by top researchers from all over the world. The reader will find a well-representative set of current research and developments related to sensors and sensing for intelligent vehicles. The topics of the published manuscripts can be grouped into seven main categories: (1) assistance systems and automatic vehicle operation, (2) vehicle positioning and localization, (3) fault diagnosis and fail-x systems, (4) perception and scene understanding, (5) smart regenerative braking systems for electric vehicles, (6) driver behavior modeling and (7) intelligent sensing. We, the Guest Editors, hope that the readers will find this book to contain interesting papers for their research, papers that they will enjoy reading as much as we have enjoyed organizing this Special Issue

Keywords

tracking-by-detection --- multi-vehicle tracking --- Siamese network --- data association --- Markov decision process --- driving behavior --- real-time monitoring --- driver distraction --- mobile application --- portable system --- simulation test --- dynamic driving behavior --- traffic scene augmentation --- corridor model --- IMU --- vision --- classification networks --- Hough transform --- lane markings detection --- semantic segmentation --- transfer learning --- autonomous --- off-road driving --- tire-road forces estimation --- slip angle estimation --- gauge sensors --- fuzzy logic system --- load transfer estimation --- simulation results --- normalization --- lateral force empirical model --- driver monitor --- lane departure --- statistical process control --- fault detection --- sensor fault --- signal restoration --- intelligent vehicle --- autonomous vehicle --- kinematic model --- visual SLAM --- sparse direct method --- photometric calibration --- corner detection and filtering --- loop closure detection --- road friction coefficient --- tire model --- nonlinear observer --- self-aligning torque --- lateral displacement --- Lyapunov method --- automatic parking system (APS) --- end-to-end parking --- reinforcement learning --- parking slot tracking --- deceleration planning --- multi-layer perceptron --- smart regenerative braking --- electric vehicles --- vehicle speed prediction --- driver behavior modeling --- electric vehicle control --- driver characteristics online learning --- objects’ edge detection --- stixel histograms accumulate --- point cloud segmentation --- autonomous vehicles --- scene understanding --- occlusion reasoning --- road detection --- advanced driver assistance system --- trajectory prediction --- risk assessment --- collision warning --- connected vehicles --- vehicular communications --- vulnerable road users --- fail-operational systems --- fall-back strategy --- automated driving --- advanced driving assistance systems --- illumination --- shadow detection --- shadow edge --- image processing --- traffic light detection --- intelligent transportation system --- lane-changing --- merging maneuvers --- game theory --- decision-making --- intelligent vehicles --- model predictive controller --- automatic train operation --- softness factor --- fusion velocity --- online obtaining --- hardware-in-the-loop simulation --- driving assistant --- driving diagnosis --- accident risk maps --- driving safety --- intelligent driving --- virtual test environment --- millimeter wave radar --- lane-change decision --- risk perception --- mixed traffic --- minimum safe deceleration --- automated driving system (ADS) --- sensor fusion --- multi-lane detection --- particle filter --- self-driving car --- unscented Kalman filter --- vehicle model --- Monte Carlo localization --- millimeter-wave radar --- square-root cubature Kalman filter --- Sage-Husa algorithm --- target tracking --- stationary and moving object classification --- localization --- LiDAR --- GNSS --- Global Positioning System (GPS) --- monte carlo --- autonomous driving --- robot motion --- path planning --- piecewise linear approximation --- multiple-target path planning --- autonomous mobile robot --- homotopy based path planning --- LiDAR signal processing --- sensor and information fusion --- advanced driver assistance systems --- autonomous racing --- high-speed camera --- real-time systems --- LiDAR odometry --- fail-aware --- sensors --- sensing --- percepction --- object detection and tracking --- scene segmentation --- vehicle positioning --- fail-x systems --- driver behavior modelling --- automatic operation


Book
Intelligent Vehicles
Authors: --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the results of the successful Sensors Special Issue on Intelligent Vehicles that received submissions between March 2019 and May 2020. The Guest Editors of this Special Issue are Dr. David Fernández-Llorca, Dr. Ignacio Parra-Alonso, Dr. Iván García-Daza and Dr. Noelia Parra-Alonso, all from the Computer Engineering Department at the University of Alcalá (Madrid, Spain). A total of 32 manuscripts were finally accepted between 2019 and 2020, presented by top researchers from all over the world. The reader will find a well-representative set of current research and developments related to sensors and sensing for intelligent vehicles. The topics of the published manuscripts can be grouped into seven main categories: (1) assistance systems and automatic vehicle operation, (2) vehicle positioning and localization, (3) fault diagnosis and fail-x systems, (4) perception and scene understanding, (5) smart regenerative braking systems for electric vehicles, (6) driver behavior modeling and (7) intelligent sensing. We, the Guest Editors, hope that the readers will find this book to contain interesting papers for their research, papers that they will enjoy reading as much as we have enjoyed organizing this Special Issue

Keywords

History of engineering & technology --- tracking-by-detection --- multi-vehicle tracking --- Siamese network --- data association --- Markov decision process --- driving behavior --- real-time monitoring --- driver distraction --- mobile application --- portable system --- simulation test --- dynamic driving behavior --- traffic scene augmentation --- corridor model --- IMU --- vision --- classification networks --- Hough transform --- lane markings detection --- semantic segmentation --- transfer learning --- autonomous --- off-road driving --- tire-road forces estimation --- slip angle estimation --- gauge sensors --- fuzzy logic system --- load transfer estimation --- simulation results --- normalization --- lateral force empirical model --- driver monitor --- lane departure --- statistical process control --- fault detection --- sensor fault --- signal restoration --- intelligent vehicle --- autonomous vehicle --- kinematic model --- visual SLAM --- sparse direct method --- photometric calibration --- corner detection and filtering --- loop closure detection --- road friction coefficient --- tire model --- nonlinear observer --- self-aligning torque --- lateral displacement --- Lyapunov method --- automatic parking system (APS) --- end-to-end parking --- reinforcement learning --- parking slot tracking --- deceleration planning --- multi-layer perceptron --- smart regenerative braking --- electric vehicles --- vehicle speed prediction --- driver behavior modeling --- electric vehicle control --- driver characteristics online learning --- objects’ edge detection --- stixel histograms accumulate --- point cloud segmentation --- autonomous vehicles --- scene understanding --- occlusion reasoning --- road detection --- advanced driver assistance system --- trajectory prediction --- risk assessment --- collision warning --- connected vehicles --- vehicular communications --- vulnerable road users --- fail-operational systems --- fall-back strategy --- automated driving --- advanced driving assistance systems --- illumination --- shadow detection --- shadow edge --- image processing --- traffic light detection --- intelligent transportation system --- lane-changing --- merging maneuvers --- game theory --- decision-making --- intelligent vehicles --- model predictive controller --- automatic train operation --- softness factor --- fusion velocity --- online obtaining --- hardware-in-the-loop simulation --- driving assistant --- driving diagnosis --- accident risk maps --- driving safety --- intelligent driving --- virtual test environment --- millimeter wave radar --- lane-change decision --- risk perception --- mixed traffic --- minimum safe deceleration --- automated driving system (ADS) --- sensor fusion --- multi-lane detection --- particle filter --- self-driving car --- unscented Kalman filter --- vehicle model --- Monte Carlo localization --- millimeter-wave radar --- square-root cubature Kalman filter --- Sage-Husa algorithm --- target tracking --- stationary and moving object classification --- localization --- LiDAR --- GNSS --- Global Positioning System (GPS) --- monte carlo --- autonomous driving --- robot motion --- path planning --- piecewise linear approximation --- multiple-target path planning --- autonomous mobile robot --- homotopy based path planning --- LiDAR signal processing --- sensor and information fusion --- advanced driver assistance systems --- autonomous racing --- high-speed camera --- real-time systems --- LiDAR odometry --- fail-aware --- sensors --- sensing --- percepction --- object detection and tracking --- scene segmentation --- vehicle positioning --- fail-x systems --- driver behavior modelling --- automatic operation

Listing 1 - 6 of 6
Sort by