Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Feedback (Electronics) --- Invariant subspaces --- Rétroaction (Electronique) --- Sous-espaces invariants
Choose an application
Hilbert space --- Functions --- Invariant subspaces --- Espace de Hilbert --- Fonctions (Mathématiques) --- Sous-espaces invariants
Choose an application
Operator theory --- Linear operators. --- Opérateurs linéaires. --- Invariant subspaces. --- Sous-espaces invariants. --- Opérateurs linéaires. --- Analyse fonctionnelle --- Functional analysis
Choose an application
Operateurs [Theorie des ] --- Operator theory --- Operatorentheorie --- Opérateurs linéaires. --- Opérateurs sousnormaux. --- Linear operators --- Subnormal operators --- Sous-espaces invariants --- Invariant subspaces --- Opérateurs linéaires --- Linear operators. --- Analyse fonctionnelle --- Operateurs lineaires hilbertiens --- Espaces de hilbert --- Theorie spectrale --- Operateurs lineaires
Choose an application
Linear operators. --- Opérateurs linéaires --- Invariant subspaces. --- Sous-espaces invariants. --- Analytic functions. --- Fonctions analytiques --- Factorization of operators --- Factorisation d'opérateurs. --- Vector valued functions. --- Fonctions vectorielles. --- Operateurs lineaires hilbertiens
Choose an application
Harmonic analysis. Fourier analysis --- Banach algebras --- Hardy classes --- Invariant subspaces --- Riemann surfaces --- Surfaces, Riemann --- Functions --- Subspaces, Invariant --- Functional analysis --- Hilbert space --- Classes, Hardy --- Hp classes --- Function algebras --- Functions of complex variables --- Algebras, Banach --- Banach rings --- Metric rings --- Normed rings --- Banach spaces --- Topological algebras --- Riemann surfaces. --- Hardy classes. --- Invariant subspaces. --- Banach algebras. --- Banach, Algèbres de. --- Sous-espaces invariants. --- Hardy, Classes de. --- Riemann, Surfaces de.
Choose an application
The subject of this book lies on the boundary between probability theory and the theory of function spaces. Here Professor Braverman investigates independent random variables in rearrangement invariant (r.i.) spaces. The significant feature of r.i. spaces is that the norm of an element depends on its distribution only, and this property allows the results and methods associated with r.i. spaces to be applied to problems in probability theory. On the other hand, probabilistic methods can also prove useful in the study of r.i. spaces. In this book new techniques are used and a number of interesting results are given. Most of the results are due to the author but have never before been available in English. Here they are all presented together in a volume that will be essential reading for all serious researchers in this area.
Random variables. --- Rearrangement invariant spaces. --- Inequalities (Mathematics) --- Processes, Infinite --- Invariant spaces, Rearrangement --- Spaces, Rearrangement invariant --- Function spaces --- Chance variables --- Stochastic variables --- Probabilities --- Variables (Mathematics) --- Probability --- Random variables --- Rearrangement invariant spaces --- Variables aléatoires --- Sous espaces invariants --- 519.214 --- 519.214 Limit theorems --- Limit theorems
Choose an application
Opérateurs linéaires. --- Dilatation, Théorie de la (théorie des opérateurs) --- Linear operators --- Dilation theory (Operator theory) --- Sous-espaces invariants --- Invariant subspaces --- Subnormal operators --- Opérateurs sousnormaux. --- Opérateurs compacts. --- Compact operators --- Opérateurs linéaires. --- Dilatation, Théorie de la (théorie des opérateurs) --- Opérateurs sousnormaux. --- Opérateurs compacts.
Listing 1 - 8 of 8 |
Sort by
|