Narrow your search

Library

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

UGent (2)

VIVES (2)

FARO (1)

KU Leuven (1)

UAntwerpen (1)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (3)

2012 (1)

1993 (1)

1987 (1)

Listing 1 - 6 of 6
Sort by

Book
MAO-B-inhibitor selegiline (R-(-)-deprenyl) : a new therapeutic concept in the treatment of Parkinson's disease : proceedings of the international symposium in Berlin, January 23-25, 1987
Authors: ---
ISBN: 0387820094 Year: 1987 Publisher: Wien ; New York : Springer-Verlag,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Inhibitors of monoamine oxidase B: pharmacology and clinical use in neurodegenerative disorders
Author:
ISBN: 3764327820 0817627820 9780817627829 Year: 1993 Publisher: Basel Birkhäuser Verlag


Book
How selegiline (( - )-deprenyl) slows brain aging
Author:
ISBN: 1608054705 9781608054701 9781608054701 9781608055944 Year: 2012 Publisher: [Place of publication not identified] Bentham Science Publishers

Loading...
Export citation

Choose an application

Bookmark

Abstract

This e-book is a reference on Selegiline ((-)-Deprenyl) effects on the brain. Selegiline, described in thousands of research papers, is registered in over 60 countries. At present, more than one hundred preparations containing selegiline circulate in the global market under different brand names. They are widely used in the treatment of Parkinson's disease, Alzheimer's disease, major depression and as a geroprotective / anti-aging drug. ((-)-Deprenyl) selegiline, the first selective inhibitor of B-type MAO which, in contrast to the known MAO inhibitors, did not potentiate the effect of tyra


Book
Molecular Mechanisms of Sensorineural Hearing Loss and Development of Inner Ear Therapeutics
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The sense of hearing is vulnerable to environmental challenges, such as exposure to noise. More than 1.5 billion people experience some decline in hearing ability during their lifetime, of whom at least 430 million will be affected by disabling hearing loss. If not identified and addressed in a timely way, hearing loss can severely reduce the quality of life at various stages. Some causes of hearing loss can be prevented, for example from occupational or leisure noise. The World Health Organization estimates that more than 1 billion young people put themselves at risk of permanent hearing loss by listening to loud music over long periods of time. Mitigating such risks through public health action is essential to reduce the impact of hearing loss in the community. The etiology of sensorineural hearing loss is complex and multifactorial, arising from congenital and acquired causes. This book highlights the diverse range of approaches to sensorineural hearing loss, from designing new animal models of age-related hearing loss, to the use of microRNAs as biomarkers of cochlear injury and drug repurposing for the therapy of age-related and noise-induced hearing loss. Further investigation into the underlying molecular mechanisms of sensorineural hearing loss and the integration of the novel drug, cell, and gene therapy strategies into controlled clinical studies will permit significant advances in a field where there are currently many unmet needs.

Keywords

Medicine --- brain-derived neurotrophic factor --- TrkB --- inner ear --- development --- zebrafish --- mitochondria dysfunction --- reactive oxygen species --- hypoxic --- d-galactose --- high-fat diet --- aging --- hearing loss --- astrocytes --- auditory brainstem --- lateral superior olive --- gap junctions --- voltage-activated calcium channel 1.3 --- otoferlin --- spontaneous activity --- deafness --- circadian dysregulation --- clock genes --- noise-induced hearing loss --- sensory hair cells --- synaptic ribbons --- sensorineural hearing loss --- hyperbaric oxygenation --- adjunctive therapy --- microRNAs --- cochlear nucleus --- inferior colliculus --- neuroplasticity --- noise-induced cochlear injury --- cochlear rescue --- otoprotection --- adenosine A1 receptor --- regulator of G protein signalling 4 --- CCG-4986 --- intratympanic drug delivery --- potassium voltage-gated channel subfamily q member 4 --- potassium --- nonsyndromic hearing loss --- KCNQ4 activator --- age-related hearing loss --- selegiline --- chronic oral treatment --- hearing protection --- mouse model --- brain-derived neurotrophic factor --- TrkB --- inner ear --- development --- zebrafish --- mitochondria dysfunction --- reactive oxygen species --- hypoxic --- d-galactose --- high-fat diet --- aging --- hearing loss --- astrocytes --- auditory brainstem --- lateral superior olive --- gap junctions --- voltage-activated calcium channel 1.3 --- otoferlin --- spontaneous activity --- deafness --- circadian dysregulation --- clock genes --- noise-induced hearing loss --- sensory hair cells --- synaptic ribbons --- sensorineural hearing loss --- hyperbaric oxygenation --- adjunctive therapy --- microRNAs --- cochlear nucleus --- inferior colliculus --- neuroplasticity --- noise-induced cochlear injury --- cochlear rescue --- otoprotection --- adenosine A1 receptor --- regulator of G protein signalling 4 --- CCG-4986 --- intratympanic drug delivery --- potassium voltage-gated channel subfamily q member 4 --- potassium --- nonsyndromic hearing loss --- KCNQ4 activator --- age-related hearing loss --- selegiline --- chronic oral treatment --- hearing protection --- mouse model


Book
Molecular Mechanisms of Sensorineural Hearing Loss and Development of Inner Ear Therapeutics
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The sense of hearing is vulnerable to environmental challenges, such as exposure to noise. More than 1.5 billion people experience some decline in hearing ability during their lifetime, of whom at least 430 million will be affected by disabling hearing loss. If not identified and addressed in a timely way, hearing loss can severely reduce the quality of life at various stages. Some causes of hearing loss can be prevented, for example from occupational or leisure noise. The World Health Organization estimates that more than 1 billion young people put themselves at risk of permanent hearing loss by listening to loud music over long periods of time. Mitigating such risks through public health action is essential to reduce the impact of hearing loss in the community. The etiology of sensorineural hearing loss is complex and multifactorial, arising from congenital and acquired causes. This book highlights the diverse range of approaches to sensorineural hearing loss, from designing new animal models of age-related hearing loss, to the use of microRNAs as biomarkers of cochlear injury and drug repurposing for the therapy of age-related and noise-induced hearing loss. Further investigation into the underlying molecular mechanisms of sensorineural hearing loss and the integration of the novel drug, cell, and gene therapy strategies into controlled clinical studies will permit significant advances in a field where there are currently many unmet needs.


Book
Molecular Mechanisms of Sensorineural Hearing Loss and Development of Inner Ear Therapeutics
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The sense of hearing is vulnerable to environmental challenges, such as exposure to noise. More than 1.5 billion people experience some decline in hearing ability during their lifetime, of whom at least 430 million will be affected by disabling hearing loss. If not identified and addressed in a timely way, hearing loss can severely reduce the quality of life at various stages. Some causes of hearing loss can be prevented, for example from occupational or leisure noise. The World Health Organization estimates that more than 1 billion young people put themselves at risk of permanent hearing loss by listening to loud music over long periods of time. Mitigating such risks through public health action is essential to reduce the impact of hearing loss in the community. The etiology of sensorineural hearing loss is complex and multifactorial, arising from congenital and acquired causes. This book highlights the diverse range of approaches to sensorineural hearing loss, from designing new animal models of age-related hearing loss, to the use of microRNAs as biomarkers of cochlear injury and drug repurposing for the therapy of age-related and noise-induced hearing loss. Further investigation into the underlying molecular mechanisms of sensorineural hearing loss and the integration of the novel drug, cell, and gene therapy strategies into controlled clinical studies will permit significant advances in a field where there are currently many unmet needs.

Listing 1 - 6 of 6
Sort by