Listing 1 - 2 of 2 |
Sort by
|
Choose an application
Convolution and Equidistribution explores an important aspect of number theory--the theory of exponential sums over finite fields and their Mellin transforms--from a new, categorical point of view. The book presents fundamentally important results and a plethora of examples, opening up new directions in the subject. The finite-field Mellin transform (of a function on the multiplicative group of a finite field) is defined by summing that function against variable multiplicative characters. The basic question considered in the book is how the values of the Mellin transform are distributed (in a probabilistic sense), in cases where the input function is suitably algebro-geometric. This question is answered by the book's main theorem, using a mixture of geometric, categorical, and group-theoretic methods. By providing a new framework for studying Mellin transforms over finite fields, this book opens up a new way for researchers to further explore the subject.
Mellin transform. --- Convolutions (Mathematics) --- Sequences (Mathematics) --- Mathematical sequences --- Numerical sequences --- Algebra --- Mathematics --- Convolution transforms --- Transformations, Convolution --- Distribution (Probability theory) --- Functions --- Integrals --- Transformations (Mathematics) --- Transform, Mellin --- Integral transforms --- ArtinГchreier reduced polynomial. --- Emanuel Kowalski. --- EulerАoincar formula. --- Frobenius conjugacy class. --- Frobenius conjugacy. --- Frobenius tori. --- GoursatЋolchinВibet theorem. --- Kloosterman sheaf. --- Laurent polynomial. --- Legendre. --- Pierre Deligne. --- Ron Evans. --- Tannakian category. --- Tannakian groups. --- Zeeev Rudnick. --- algebro-geometric. --- autodual objects. --- autoduality. --- characteristic two. --- connectedness. --- dimensional objects. --- duality. --- equidistribution. --- exponential sums. --- fiber functor. --- finite field Mellin transform. --- finite field. --- finite fields. --- geometrical irreducibility. --- group scheme. --- hypergeometric sheaf. --- interger monic polynomials. --- isogenies. --- lie-irreducibility. --- lisse. --- middle convolution. --- middle extension sheaf. --- monic polynomial. --- monodromy groups. --- noetherian connected scheme. --- nonsplit form. --- nontrivial additive character. --- number theory. --- odd characteristic. --- odd prime. --- orthogonal case. --- perverse sheaves. --- polynomials. --- pure weight. --- semisimple object. --- semisimple. --- sheaves. --- signs. --- split form. --- supermorse. --- theorem. --- theorems.
Choose an application
This book is concerned with two areas of mathematics, at first sight disjoint, and with some of the analogies and interactions between them. These areas are the theory of linear differential equations in one complex variable with polynomial coefficients, and the theory of one parameter families of exponential sums over finite fields. After reviewing some results from representation theory, the book discusses results about differential equations and their differential galois groups (G) and one-parameter families of exponential sums and their geometric monodromy groups (G). The final part of the book is devoted to comparison theorems relating G and G of suitably "corresponding" situations, which provide a systematic explanation of the remarkable "coincidences" found "by hand" in the hypergeometric case.
Exponential sums. --- Differential equations. --- Adjoint representation. --- Algebraic geometry. --- Algebraic integer. --- Algebraically closed field. --- Automorphism. --- Base change. --- Bernard Dwork. --- Big O notation. --- Bijection. --- Calculation. --- Characteristic polynomial. --- Codimension. --- Coefficient. --- Cohomology. --- Comparison theorem. --- Complex manifold. --- Conjugacy class. --- Connected component (graph theory). --- Convolution. --- Determinant. --- Diagram (category theory). --- Differential Galois theory. --- Differential equation. --- Dimension (vector space). --- Dimension. --- Direct sum. --- Divisor. --- Eigenvalues and eigenvectors. --- Endomorphism. --- Equation. --- Euler characteristic. --- Existential quantification. --- Exponential sum. --- Fiber bundle. --- Field of fractions. --- Finite field. --- Formal power series. --- Fourier transform. --- Fundamental group. --- Fundamental representation. --- Galois extension. --- Galois group. --- Gauss sum. --- Generic point. --- Group theory. --- Homomorphism. --- Hypergeometric function. --- Identity component. --- Identity element. --- Integer. --- Irreducibility (mathematics). --- Irreducible representation. --- Isogeny. --- Isomorphism class. --- L-function. --- Laurent polynomial. --- Lie algebra. --- Logarithm. --- Mathematical induction. --- Matrix coefficient. --- Maximal compact subgroup. --- Maximal torus. --- Mellin transform. --- Monic polynomial. --- Monodromy theorem. --- Monodromy. --- Monomial. --- Natural number. --- Normal subgroup. --- P-adic number. --- Permutation. --- Polynomial. --- Prime number. --- Pullback. --- Quotient group. --- Reductive group. --- Regular singular point. --- Representation theory. --- Ring homomorphism. --- Root of unity. --- Scientific notation. --- Set (mathematics). --- Sheaf (mathematics). --- Special case. --- Subcategory. --- Subgroup. --- Subring. --- Subset. --- Summation. --- Surjective function. --- Symmetric group. --- Tensor product. --- Theorem. --- Theory. --- Three-dimensional space (mathematics). --- Torsor (algebraic geometry). --- Trichotomy (mathematics). --- Unitarian trick. --- Unitary group. --- Variable (mathematics).
Listing 1 - 2 of 2 |
Sort by
|