Narrow your search
Listing 1 - 10 of 12 << page
of 2
>>
Sort by

Dissertation
Master thesis : Digital twin of a power converter: using hardware-in-the-loop for the design and evaluation of digital control algorithms.
Authors: --- --- --- ---
Year: 2022 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nowadays, renewable energy sources take a larger share in energy production. Power electronics converters are extensively used to optimize energy yield, and interface those renewable energy sources with the electrical grid. As such, industries tend to develop more and more complex controllers for power electronics converters, and there is a need for tools to validate controller design in real-life conditions before implementation. \&#13;&#13;This thesis focuses on one emulation technique called “hardware-in-the-loop” (HIL). HIL devices can be used to simulate the dynamics of power electronics converters in real-time, thanks to their extensive computational capabilities. They can also interface hardware devices with models developed on software. This is especially useful if one wants to validate the design of a controller, once it is deported on a hardware device, to identify any possible implementation issues. \&#13;&#13;The thesis is divided into two parts. The first part highlights the advantages of the HIL technique for validation of controller design. A model of a battery charger is designed, and the switching operations are performed by a controller. The controller is either simulated in the same environment as the battery charger, or deported on a real control board interfaced with the battery charger emulation. The second part highlights the advantages of the HIL technique for the simulation of power electronics converters and demonstrates the reliability of HIL simulation.&#13;Therefore, measurements from a real converter from CE+T power products, are compared with HIL simulation data. In order to perform the simulation, the real converter is modeled inside the Typhoon HIL software and the control board of the real converter is interfaced with the HIL device. \&#13;&#13;Finally, the comparison results are discussed and the potential of HIL for future work is evoked.


Book
Success in Hill country
Authors: ---
ISBN: 9781722522063 1722522062 Year: 2019 Publisher: [New York]

Loading...
Export citation

Choose an application

Bookmark

Abstract

Stories of success told by entrepreneurs, artists, educators, doctors, and athletes from Appalachia.


Book
Echoing Hylas
Author:
ISBN: 0299305430 9780299305437 9780299305406 0299305406 0299305449 9780299305444 Year: 2015 Publisher: Madison, Wisconsin The University of Wisconsin Press


Book
Advancements in Real-Time Simulation of Power and Energy Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modern power and energy systems are characterized by the wide integration of distributed generation, storage and electric vehicles, adoption of ICT solutions, and interconnection of different energy carriers and consumer engagement, posing new challenges and creating new opportunities. Advanced testing and validation methods are needed to efficiently validate power equipment and controls in the contemporary complex environment and support the transition to a cleaner and sustainable energy system. Real-time hardware-in-the-loop (HIL) simulation has proven to be an effective method for validating and de-risking power system equipment in highly realistic, flexible, and repeatable conditions. Controller hardware-in-the-loop (CHIL) and power hardware-in-the-loop (PHIL) are the two main HIL simulation methods used in industry and academia that contribute to system-level testing enhancement by exploiting the flexibility of digital simulations in testing actual controllers and power equipment. This book addresses recent advances in real-time HIL simulation in several domains (also in new and promising areas), including technique improvements to promote its wider use. It is composed of 14 papers dealing with advances in HIL testing of power electronic converters, power system protection, modeling for real-time digital simulation, co-simulation, geographically distributed HIL, and multiphysics HIL, among other topics.

Keywords

Technology: general issues --- design methodology --- FPGA --- hardware in the loop --- LabVIEW --- real-time simulation --- power converters --- HIL --- CHIL --- integrated laboratories --- real-time communication platform --- power system testing --- co-simulation --- geographically distributed simulations --- power system protection and control --- holistic testing --- lab testing --- field testing --- PHIL --- PSIL --- pre-certification --- smart grids --- standards --- replica controller --- TCSC --- DPT --- testing --- control and protection --- large-scale power system --- voltage regulation --- distribution system --- power hardware-in-the-loop --- distributed energy resources --- extremum seeking control --- particle swarm optimization --- state estimation --- reactive power support --- volt–VAR --- model-based design --- multi physics simulation --- marine propulsion --- ship dynamic --- DC microgrid --- shipboard power systems --- under-frequency load shedding --- intelligent electronic device --- proof of concept --- hardware-in-the-loop testing --- real-time digital simulator --- frequency stability margin --- rate-of-change-of-frequency --- geographically distributed real-time simulation --- remote power hardware-in-the-Loop --- grid-forming converter --- hardware-in-the-loop --- simulation fidelity --- energy-based metric --- energy residual --- quasi-stationary --- Hardware-in-the-Loop (HIL) --- Control HIL (CHIL) --- Power HIL (PHIL) --- testing of smart grid technologies --- power electronics --- shifted frequency analysis --- dynamic phasors --- real-time hybrid-simulator (RTHS) --- hybrid simulation --- hardware-in-the-loop simulation (HILS) --- dynamic performance test (DPT) --- real-time simulator (RTS) --- testing of replicas --- multi-rate simulation --- EMT --- control --- inverters --- inverter-dominated grids --- power system transients --- predictive control --- hydro-electric plant --- variable speed operation --- ‘Hill Charts’ --- reduced-scale model --- testing and validation


Book
Advancements in Real-Time Simulation of Power and Energy Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modern power and energy systems are characterized by the wide integration of distributed generation, storage and electric vehicles, adoption of ICT solutions, and interconnection of different energy carriers and consumer engagement, posing new challenges and creating new opportunities. Advanced testing and validation methods are needed to efficiently validate power equipment and controls in the contemporary complex environment and support the transition to a cleaner and sustainable energy system. Real-time hardware-in-the-loop (HIL) simulation has proven to be an effective method for validating and de-risking power system equipment in highly realistic, flexible, and repeatable conditions. Controller hardware-in-the-loop (CHIL) and power hardware-in-the-loop (PHIL) are the two main HIL simulation methods used in industry and academia that contribute to system-level testing enhancement by exploiting the flexibility of digital simulations in testing actual controllers and power equipment. This book addresses recent advances in real-time HIL simulation in several domains (also in new and promising areas), including technique improvements to promote its wider use. It is composed of 14 papers dealing with advances in HIL testing of power electronic converters, power system protection, modeling for real-time digital simulation, co-simulation, geographically distributed HIL, and multiphysics HIL, among other topics.

Keywords

design methodology --- FPGA --- hardware in the loop --- LabVIEW --- real-time simulation --- power converters --- HIL --- CHIL --- integrated laboratories --- real-time communication platform --- power system testing --- co-simulation --- geographically distributed simulations --- power system protection and control --- holistic testing --- lab testing --- field testing --- PHIL --- PSIL --- pre-certification --- smart grids --- standards --- replica controller --- TCSC --- DPT --- testing --- control and protection --- large-scale power system --- voltage regulation --- distribution system --- power hardware-in-the-loop --- distributed energy resources --- extremum seeking control --- particle swarm optimization --- state estimation --- reactive power support --- volt–VAR --- model-based design --- multi physics simulation --- marine propulsion --- ship dynamic --- DC microgrid --- shipboard power systems --- under-frequency load shedding --- intelligent electronic device --- proof of concept --- hardware-in-the-loop testing --- real-time digital simulator --- frequency stability margin --- rate-of-change-of-frequency --- geographically distributed real-time simulation --- remote power hardware-in-the-Loop --- grid-forming converter --- hardware-in-the-loop --- simulation fidelity --- energy-based metric --- energy residual --- quasi-stationary --- Hardware-in-the-Loop (HIL) --- Control HIL (CHIL) --- Power HIL (PHIL) --- testing of smart grid technologies --- power electronics --- shifted frequency analysis --- dynamic phasors --- real-time hybrid-simulator (RTHS) --- hybrid simulation --- hardware-in-the-loop simulation (HILS) --- dynamic performance test (DPT) --- real-time simulator (RTS) --- testing of replicas --- multi-rate simulation --- EMT --- control --- inverters --- inverter-dominated grids --- power system transients --- predictive control --- hydro-electric plant --- variable speed operation --- ‘Hill Charts’ --- reduced-scale model --- testing and validation


Book
Advancements in Real-Time Simulation of Power and Energy Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modern power and energy systems are characterized by the wide integration of distributed generation, storage and electric vehicles, adoption of ICT solutions, and interconnection of different energy carriers and consumer engagement, posing new challenges and creating new opportunities. Advanced testing and validation methods are needed to efficiently validate power equipment and controls in the contemporary complex environment and support the transition to a cleaner and sustainable energy system. Real-time hardware-in-the-loop (HIL) simulation has proven to be an effective method for validating and de-risking power system equipment in highly realistic, flexible, and repeatable conditions. Controller hardware-in-the-loop (CHIL) and power hardware-in-the-loop (PHIL) are the two main HIL simulation methods used in industry and academia that contribute to system-level testing enhancement by exploiting the flexibility of digital simulations in testing actual controllers and power equipment. This book addresses recent advances in real-time HIL simulation in several domains (also in new and promising areas), including technique improvements to promote its wider use. It is composed of 14 papers dealing with advances in HIL testing of power electronic converters, power system protection, modeling for real-time digital simulation, co-simulation, geographically distributed HIL, and multiphysics HIL, among other topics.

Keywords

Technology: general issues --- design methodology --- FPGA --- hardware in the loop --- LabVIEW --- real-time simulation --- power converters --- HIL --- CHIL --- integrated laboratories --- real-time communication platform --- power system testing --- co-simulation --- geographically distributed simulations --- power system protection and control --- holistic testing --- lab testing --- field testing --- PHIL --- PSIL --- pre-certification --- smart grids --- standards --- replica controller --- TCSC --- DPT --- testing --- control and protection --- large-scale power system --- voltage regulation --- distribution system --- power hardware-in-the-loop --- distributed energy resources --- extremum seeking control --- particle swarm optimization --- state estimation --- reactive power support --- volt–VAR --- model-based design --- multi physics simulation --- marine propulsion --- ship dynamic --- DC microgrid --- shipboard power systems --- under-frequency load shedding --- intelligent electronic device --- proof of concept --- hardware-in-the-loop testing --- real-time digital simulator --- frequency stability margin --- rate-of-change-of-frequency --- geographically distributed real-time simulation --- remote power hardware-in-the-Loop --- grid-forming converter --- hardware-in-the-loop --- simulation fidelity --- energy-based metric --- energy residual --- quasi-stationary --- Hardware-in-the-Loop (HIL) --- Control HIL (CHIL) --- Power HIL (PHIL) --- testing of smart grid technologies --- power electronics --- shifted frequency analysis --- dynamic phasors --- real-time hybrid-simulator (RTHS) --- hybrid simulation --- hardware-in-the-loop simulation (HILS) --- dynamic performance test (DPT) --- real-time simulator (RTS) --- testing of replicas --- multi-rate simulation --- EMT --- control --- inverters --- inverter-dominated grids --- power system transients --- predictive control --- hydro-electric plant --- variable speed operation --- ‘Hill Charts’ --- reduced-scale model --- testing and validation


Book
Selected Papers from IEEE ICKII 2018
Authors: ---
ISBN: 3039212745 3039212737 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Electronic engineering and design innovation are both academic and practical engineering fields that involve systematic technological materialization through scientific principles and engineering designs. Technological innovation via electronic engineering includes electrical circuits and devices, computer science and engineering, communications and information processing, and electrical engineering communications. The Special Issue selected excellent papers presented at the International Conference on Knowledge Innovation and Invention 2018 (IEEE ICKII 2018) on the topic of electronics and their applications. This conference was held on Jeju Island, South Korea, 23–27 July 2018, and it provided a unified communication platform for researchers from all over the world. The main goal of this Special Issue titled “Selected papers from IEEE ICKII 2018” is to discover new scientific knowledge relevant to the topic of electronics and their applications.


Book
Textile designers at the cutting edge.
Author:
ISBN: 9781856695817 Year: 2009 Publisher: London Laurence King

Loading...
Export citation

Choose an application

Bookmark

Abstract

This text showcases a selection of cutting-edge textile designs from around the world, presented in feature interviews with the world's most visionary young designers. Chosen for their contributions to fashion textiles and interior fabrics, the designers describe their output and inspirations in their own words.


Book
Design and Control of Power Converters 2019
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc.

Keywords

Technology: general issues --- vehicle-grid coupling system --- low frequency oscillation --- traction line-side converter (LSC) --- model-based predictive current control (MBPCC) --- dSPACE semi-physical verification --- switching converters --- sliding-mode control --- current-mode control --- hysteresis control --- PV-connected inverter --- MPPT --- SPPT --- adaptive hysteresis current control --- hybrid storage systems --- power electronic converters --- half-bridge current-source converters --- supercapacitors --- cascaded H-bridge (CHB) --- dc-link voltage balance control --- multilevel converter --- power control --- single-phase system --- pulsating output current --- light emitting diode (LED) --- peak to average ratio (PTAR) --- power factor correction --- harmonic injection --- modelling --- feedback loop control --- three-port converter --- linear active disturbance rejection control --- virtual damping --- linear extended state observer --- power converters --- digital control --- design space --- frequency domain --- switched affine systems --- hybrid systems --- fuzzy identification --- fuzzy modeling --- two degrees of freedom --- fuzzy model predictive control --- PLC --- bus converter --- DC bus --- LED driver --- buck converter --- inversion formulae --- phase margin --- gain crossover frequency --- wireless power transfer --- inductive power transfer --- Pareto optimality --- coil design --- magnetics design --- GaN-based inverter and converter --- zeta inverter --- active clamp --- synchronous rectification --- power efficiency --- circulating current --- fuzzy --- proportional integral --- proportional resonant --- MMC --- DC–DC converter --- experimental verification --- Inductor–Diode --- Inductor–Capacitor–Diode --- nonisolated --- step-down --- two-stage buck converter --- voltage regulation --- power electronic converter --- AC/AC converter --- matrix converter --- reliability --- DPWM --- photovoltaic power system --- differential flatness --- nonlinear control --- networked power converters --- PFC converters --- reactive power resources --- supervisory controller --- HIL Testbed --- binary particle swarm optimization (BPSO) --- nonsingular terminal sliding mode control (NTSMC) --- global best solution --- total harmonic distortion (THD) --- DC–AC converter --- decoupling --- reduced order generalized integrator (ROGI) --- optimal gain --- distributed power generation system (DPGS) --- grid-connected voltage source converters (GC-VSCs)


Book
Design and Control of Power Converters 2019
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc.

Keywords

vehicle-grid coupling system --- low frequency oscillation --- traction line-side converter (LSC) --- model-based predictive current control (MBPCC) --- dSPACE semi-physical verification --- switching converters --- sliding-mode control --- current-mode control --- hysteresis control --- PV-connected inverter --- MPPT --- SPPT --- adaptive hysteresis current control --- hybrid storage systems --- power electronic converters --- half-bridge current-source converters --- supercapacitors --- cascaded H-bridge (CHB) --- dc-link voltage balance control --- multilevel converter --- power control --- single-phase system --- pulsating output current --- light emitting diode (LED) --- peak to average ratio (PTAR) --- power factor correction --- harmonic injection --- modelling --- feedback loop control --- three-port converter --- linear active disturbance rejection control --- virtual damping --- linear extended state observer --- power converters --- digital control --- design space --- frequency domain --- switched affine systems --- hybrid systems --- fuzzy identification --- fuzzy modeling --- two degrees of freedom --- fuzzy model predictive control --- PLC --- bus converter --- DC bus --- LED driver --- buck converter --- inversion formulae --- phase margin --- gain crossover frequency --- wireless power transfer --- inductive power transfer --- Pareto optimality --- coil design --- magnetics design --- GaN-based inverter and converter --- zeta inverter --- active clamp --- synchronous rectification --- power efficiency --- circulating current --- fuzzy --- proportional integral --- proportional resonant --- MMC --- DC–DC converter --- experimental verification --- Inductor–Diode --- Inductor–Capacitor–Diode --- nonisolated --- step-down --- two-stage buck converter --- voltage regulation --- power electronic converter --- AC/AC converter --- matrix converter --- reliability --- DPWM --- photovoltaic power system --- differential flatness --- nonlinear control --- networked power converters --- PFC converters --- reactive power resources --- supervisory controller --- HIL Testbed --- binary particle swarm optimization (BPSO) --- nonsingular terminal sliding mode control (NTSMC) --- global best solution --- total harmonic distortion (THD) --- DC–AC converter --- decoupling --- reduced order generalized integrator (ROGI) --- optimal gain --- distributed power generation system (DPGS) --- grid-connected voltage source converters (GC-VSCs)

Listing 1 - 10 of 12 << page
of 2
>>
Sort by