Narrow your search

Library

UAntwerpen (2)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

UGent (1)

ULiège (1)

Vlerick Business School (1)

More...

Resource type

digital (2)

book (1)


Language

English (3)


Year
From To Submit

2016 (2)

2013 (1)

Listing 1 - 3 of 3
Sort by

Book
Numerical solutions of three classes of nonlinear parabolic integro-differential equations
Authors: --- ---
ISBN: 0128046694 0128046287 9780128046692 9780128046289 Year: 2016 Publisher: Amsterdam : Elsevier,


Digital
Numerical solutions of three classes of nonlinear parabolic integro-differential equations
Authors: --- ---
ISBN: 9780128046692 0128046694 Year: 2016 Publisher: Amsterdam Elsevier

Loading...
Export citation

Choose an application

Bookmark

Abstract


Digital
Multipoint methods for solving nonlinear equations
Authors: --- --- ---
Year: 2013 Publisher: [Oxford] Academic Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is the first on the topic and explains the most cutting-edge methods needed for precise calculations and explores the development of powerful algorithms to solve research problems. Multipoint methods have an extensive range of practical applications significant in research areas such as signal processing, analysis of convergence rate, fluid mechanics, solid state physics, and many others. The book takes an introductory approach in making qualitative comparisons of different multipoint methods from various viewpoints to help the reader understand applications of more complex methods. Evaluations are made to determine and predict efficiency and accuracy of presented models useful to wide a range of research areas along with many numerical examples for a deep understanding of the usefulness of each method. This book will make it possible for the researchers to tackle difficult problems and deepen their understanding of problem solving using numerical methods. Multipoint methods are of great practical importance, as they determine sequences of successive approximations for evaluative purposes. This is especially helpful in achieving the highest computational efficiency. The rapid development of digital computers and advanced computer arithmetic have provided a need for new methods useful to solving practical problems in a multitude of disciplines such as applied mathematics, computer science, engineering, physics, financial mathematics, and biology. Provides a succinct way of implementing a wide range of useful and important numerical algorithms for solving research problems Illustrates how numerical methods can be used to study problems which have applications in engineering and sciences, including signal processing, and control theory, and financial computation Facilitates a deeper insight into the development of methods, numerical analysis of convergence rate, and very detailed analysis of computational efficiencyProvides a powerful means of learning by systematic experimentation with some of the many fascinating problems in scienceIncludes highly efficient algorithms convenient for the implementation into the most common computer algebra systems such as Mathematica, MatLab, and Maple.

Keywords

Listing 1 - 3 of 3
Sort by