Listing 1 - 10 of 10 |
Sort by
|
Choose an application
An understanding of the relationship between the structure, mechanical properties and functions of teeth is required regarding the development of effective and durable bio-inspired synthetic dental materials. Many studies have investigated this relationship in many species. However, few studies have been conducted on the teeth of Serrasalmidae fishes. The family of Serrasalmidae, though, offers an excellent opportunity to study this relationship because of the diversity of their diet. The tooth consists of three distinct layers which are called (going from the center of the tooth to the outside): the pulp, the dentin and the enamel/enameloid. In some fishes, including those of the family Serrasalmidae, an additional superficial layer called the cuticle is also present. The topic of the present thesis is to investigate structural and mechanical adaptation of the enameloid in two Serrasalmidae fishes having different diets: the carnivorous Pygocentrus nattereri, preferentially feeding on soft prey, and the herbivorous pacu Piaractus brachypomus, preferentially eating hard shells. Enameloid microstructure is first characterized. Microscopic analysis of fractured teeth as well as surface etching performed on teeth sections allow identifying precisely the structure of the enameloid in the two species. Comparison between the structures found in the two species highlights that despite their different diets, no structural differences are observed between species with different feeding strategies (slicing vs. crushing). The enameloid of both fishes possesses a two-part organization. The inner enameloid is characterized by hydroxyapatite fiber bundles oriented and curved in a random manner forming a very sophisticated interlocking structure. The outer enameloid is organized with hydroxyapatite bundles aligned with each outer and oriented either parallel or perpendicular to the tooth surface, depending on the region analyzed. Second, the potential correlation between microstructure and mechanical properties is investigated through the assessment of local fracture behavior. Indeed, fracture resistance is an essential feature allowing the enameloid and, in general, the tooth to avoid catastrophic failure when cracks nucleate on the other surface due to repeated cycles of chewing. High load indentation tests in combination with scanning microscopy are used to explore fracture properties of the different teeth. Although the difference is not significant, a quantitative evaluation of the fracture toughness as well as a qualitative observation of the cracks morphology demonstrates that inner enameloid possesses a higher resistance to crack initiation and propagation than the outer enameloid. Furthermore, indentation-based cracks invariably propagate along the internal interfaces, especially at the interface between the hydroxyapatite bundles, and that several extrinsic toughening mechanisms, such as crack deflection/curvature and un-cracked hydroxyapatite bundles are used by the enameloid to increase fracture resistance. Novel addictive manufacturing routes such as freeze casting or magnetically assisted manufacturing may allow the fabrication of ceramic scaffolds replicating the structure seeing in the enameloid to improve fracture resistance of synthetic teeth.
Choose an application
Biomaterials—the materials used for the manufacturing of medical devices— are part of everyday life. Each one of us has likely had the experience of visting a dentist’s office, where a number of biomaterials are used temporarily or permanently in the mouth. Devices that are more complex are used for to support, heal, or replace living tissues or organs in the body that are suffering or compromised by different conditions. The materials used in their construction are metals and metallic alloys, polymers—ranging from elastomers to adhesives—and ceramics.Within these three cases, there are materials that are inert in the living environment, that perform an active function, or that are dissolved and resorbed by the metabolic pathways. Biomaterials are the outcome of a dynamic field of research that is driven by a growing demand and by the competition among the manufacturers of medical devices, with innovations improving the performance of existing devices and that contribute to the development of new ones. The collection of papers forming this volume have one particular class of of biomaterial in common, ceramic (bioceramic) composites, which as so far been used in applications such as orthopaedic joint replacement as well as in dental implants and restorations and that is being intensively investigated for bone regeneration applications. Today’s bioceramic composites (alumina–zirconia) are the golden standard in joint replacements. Several manufracturers have proposed different zirconia–alumina composites for use in hip, knee, and shoulder joint replacements, with several other innovative devices also being under study. In addition, bioceramic composites with innovative compositions are under development and will be on the market in years to come. Something that is especially interesting is the application of bioceramic composites in the regeneration of bone tissues. Research has devoted special attention to the doping of well-known materials (i.e., calcium phosphates and silicates) with bioactive ions, aiming to enhance the osteogenic ability and bioresorbability of man-made grafts. Moreover, high expectations rely on hybrid biopolymer/ceramic materials that mimic the complex composition and multiscale structure of bone tissue.
Technology: general issues --- History of engineering & technology --- biomaterials --- bone grafts --- bone repair --- dental implants --- scaffolds --- alumina --- zirconia --- Alumina-Toughened Zirconia --- Zirconia-Toughened Alumina --- hip arthroplasty --- calcium phosphates --- hydroxyapatite --- bone cements --- bioactive composites --- bone regeneration --- zirconia–alumina composite --- stabilizing oxides --- critical grain size --- tetragonality --- mechanical properties --- fracture toughness --- flexural strength --- ceramic additive manufacturing --- DLP --- bioceramics --- calcium phosphate --- carbon fibers --- mineralization --- zirconia-toughened alumina --- phase transformation --- Raman spectroscopy --- calcium-based biomineralization --- hydroxyapatite nanoparticles --- biomimicry --- multifunctional materials --- Freeze Foam --- hybrid bone --- biocompatibility --- bone replacement --- transformation toughening --- platelet reinforcement --- hip --- alumina matrix composite --- AMC --- hip prosthesis --- prosthesis --- case series --- ceramic-on-ceramic --- n/a --- zirconia-alumina composite
Choose an application
Biomaterials—the materials used for the manufacturing of medical devices— are part of everyday life. Each one of us has likely had the experience of visting a dentist’s office, where a number of biomaterials are used temporarily or permanently in the mouth. Devices that are more complex are used for to support, heal, or replace living tissues or organs in the body that are suffering or compromised by different conditions. The materials used in their construction are metals and metallic alloys, polymers—ranging from elastomers to adhesives—and ceramics.Within these three cases, there are materials that are inert in the living environment, that perform an active function, or that are dissolved and resorbed by the metabolic pathways. Biomaterials are the outcome of a dynamic field of research that is driven by a growing demand and by the competition among the manufacturers of medical devices, with innovations improving the performance of existing devices and that contribute to the development of new ones. The collection of papers forming this volume have one particular class of of biomaterial in common, ceramic (bioceramic) composites, which as so far been used in applications such as orthopaedic joint replacement as well as in dental implants and restorations and that is being intensively investigated for bone regeneration applications. Today’s bioceramic composites (alumina–zirconia) are the golden standard in joint replacements. Several manufracturers have proposed different zirconia–alumina composites for use in hip, knee, and shoulder joint replacements, with several other innovative devices also being under study. In addition, bioceramic composites with innovative compositions are under development and will be on the market in years to come. Something that is especially interesting is the application of bioceramic composites in the regeneration of bone tissues. Research has devoted special attention to the doping of well-known materials (i.e., calcium phosphates and silicates) with bioactive ions, aiming to enhance the osteogenic ability and bioresorbability of man-made grafts. Moreover, high expectations rely on hybrid biopolymer/ceramic materials that mimic the complex composition and multiscale structure of bone tissue.
biomaterials --- bone grafts --- bone repair --- dental implants --- scaffolds --- alumina --- zirconia --- Alumina-Toughened Zirconia --- Zirconia-Toughened Alumina --- hip arthroplasty --- calcium phosphates --- hydroxyapatite --- bone cements --- bioactive composites --- bone regeneration --- zirconia–alumina composite --- stabilizing oxides --- critical grain size --- tetragonality --- mechanical properties --- fracture toughness --- flexural strength --- ceramic additive manufacturing --- DLP --- bioceramics --- calcium phosphate --- carbon fibers --- mineralization --- zirconia-toughened alumina --- phase transformation --- Raman spectroscopy --- calcium-based biomineralization --- hydroxyapatite nanoparticles --- biomimicry --- multifunctional materials --- Freeze Foam --- hybrid bone --- biocompatibility --- bone replacement --- transformation toughening --- platelet reinforcement --- hip --- alumina matrix composite --- AMC --- hip prosthesis --- prosthesis --- case series --- ceramic-on-ceramic --- n/a --- zirconia-alumina composite
Choose an application
Biomaterials—the materials used for the manufacturing of medical devices— are part of everyday life. Each one of us has likely had the experience of visting a dentist’s office, where a number of biomaterials are used temporarily or permanently in the mouth. Devices that are more complex are used for to support, heal, or replace living tissues or organs in the body that are suffering or compromised by different conditions. The materials used in their construction are metals and metallic alloys, polymers—ranging from elastomers to adhesives—and ceramics.Within these three cases, there are materials that are inert in the living environment, that perform an active function, or that are dissolved and resorbed by the metabolic pathways. Biomaterials are the outcome of a dynamic field of research that is driven by a growing demand and by the competition among the manufacturers of medical devices, with innovations improving the performance of existing devices and that contribute to the development of new ones. The collection of papers forming this volume have one particular class of of biomaterial in common, ceramic (bioceramic) composites, which as so far been used in applications such as orthopaedic joint replacement as well as in dental implants and restorations and that is being intensively investigated for bone regeneration applications. Today’s bioceramic composites (alumina–zirconia) are the golden standard in joint replacements. Several manufracturers have proposed different zirconia–alumina composites for use in hip, knee, and shoulder joint replacements, with several other innovative devices also being under study. In addition, bioceramic composites with innovative compositions are under development and will be on the market in years to come. Something that is especially interesting is the application of bioceramic composites in the regeneration of bone tissues. Research has devoted special attention to the doping of well-known materials (i.e., calcium phosphates and silicates) with bioactive ions, aiming to enhance the osteogenic ability and bioresorbability of man-made grafts. Moreover, high expectations rely on hybrid biopolymer/ceramic materials that mimic the complex composition and multiscale structure of bone tissue.
Technology: general issues --- History of engineering & technology --- biomaterials --- bone grafts --- bone repair --- dental implants --- scaffolds --- alumina --- zirconia --- Alumina-Toughened Zirconia --- Zirconia-Toughened Alumina --- hip arthroplasty --- calcium phosphates --- hydroxyapatite --- bone cements --- bioactive composites --- bone regeneration --- zirconia-alumina composite --- stabilizing oxides --- critical grain size --- tetragonality --- mechanical properties --- fracture toughness --- flexural strength --- ceramic additive manufacturing --- DLP --- bioceramics --- calcium phosphate --- carbon fibers --- mineralization --- zirconia-toughened alumina --- phase transformation --- Raman spectroscopy --- calcium-based biomineralization --- hydroxyapatite nanoparticles --- biomimicry --- multifunctional materials --- Freeze Foam --- hybrid bone --- biocompatibility --- bone replacement --- transformation toughening --- platelet reinforcement --- hip --- alumina matrix composite --- AMC --- hip prosthesis --- prosthesis --- case series --- ceramic-on-ceramic
Choose an application
This book, as a collection of 17 research articles, provides a selection of the most recent advances in the synthesis, characterization, and applications of environmentally friendly and biodegradable biopolymer composites and nanocomposites. Recently, the demand has been growing for a clean and pollution-free environment and an evident target regarding the minimization of fossil fuel usage. Therefore, much attention has been focused on research to replace petroleum-based commodity plastics by biodegradable materials arising from biological and renewable resources. Biopolymers-polymers produced from natural sources either chemically from a biological material or biosynthesized by living organisms-are suitable alternatives for addressing these issues due to their outstanding properties, including good barrier performance, biodegradation ability, and low weight. However, they generally possess poor mechanical properties, a short fatigue life, low chemical resistance, poor long-term durability, and limited processing capability. In order to overcome these deficiencies, biopolymers can be reinforced with fillers or nanofillers (with at least one of their dimensions in the nanometer range). Bionanocomposites are advantageous for a wide range of applications, such as in medicine, pharmaceutics, cosmetics, food packaging, agriculture, forestry, electronics, transport, construction, and many more.
biodegradable films --- chitosan --- natural rubber --- n/a --- toughening --- elastomer --- deoxycholic acid --- cellulose fibers --- amphiphilic polymer --- cross-link density --- antioxidant activity --- nanocomposites --- silk fibroin --- impact properties --- conductivity --- antimicrobial agents --- Py-GC/MS --- Poly(propylene carbonate) --- biodisintegration --- peptide-cellulose conformation --- nanocomposite --- alginate films --- toughness --- protease sensor --- physical and mechanical properties --- biocomposites --- nanocellulose --- thermal decomposition kinetics --- potato protein --- micelles --- nanofibers --- mechanical properties --- active packaging materials --- cellulose --- structural profile --- glycol chitosan --- glass transition --- essential oils --- compatibility --- plasticized starch --- natural fibers --- biopolyester --- human neutrophil elastase --- biodegradation --- bio-composites --- fiber/matrix adhesion --- ?-tocopherol succinate --- MgO whiskers --- carbon nanotubes --- PLLA --- electrospinning --- chitin nanofibrils --- FTIR --- biopolymers composites --- DMA --- wheat gluten --- water uptake --- folic acid --- polycarbonate --- aerogel --- surfactant --- paclitaxel --- chemical pre-treatment --- biomass --- thermoplastic polyurethane --- poly(3-hydroxybutyrate-3-hydroxyvalerate) --- stress-strain --- polyfunctional monomers --- bio-based polymers --- tensile properties --- compatibilizer --- TG/FTIR --- PVA --- in vitro degradation --- poly(lactic acid) --- heat deflection temperature
Choose an application
Graphene-polymer nanocomposites continue to gain interest in diverse scientific and technological fields. Graphene-based nanomaterials present the advantages of other carbon nanofillers, like electrical and thermal conductivity, while having significantly lower production costs when compared to materials such as carbon nanotubes, for instance. In addition, in the oxidized forms of graphene, the large specific area combined with a large quantity of functionalizable chemical groups available for physical or chemical interaction with polymers, allow for good dispersion and tunable binding with the surrounding matrix. Other features are noteworthy in graphene-based nanomaterials, like their generally good biocompatibility and the ability to absorb near-infrared radiation, allowing for the use in biomedical applications, such as drug delivery and photothermal therapy.This Special Issue provides an encompassing view on the state of the art of graphene-polymer composites, showing how current research is dealing with new and exciting challenges. The published papers cover topics ranging from novel production methods and insights on mechanisms of mechanical reinforcement of composites, to applications as diverse as automotive and aeronautics, cancer treatment, anticorrosive coatings, thermally conductive fabrics and foams, and oil-adsorbent aerogels.
Technology: general issues --- graphene oxide --- polymer composite fiber --- interfacial bonding --- polypropylene --- thermal stability --- graphene --- unsaturated polyester resins --- tung oil --- biobased polymer nanocomposites --- in situ melt polycondensation --- graphene polymer matrix composite --- polyamide 66 --- elongational flow --- hydrogen bond --- poly(trimethylene terephthalate) --- electrospinning --- composite fiber --- morphology --- crystallization --- electrical conductivity --- mechanical property --- elastic recovery --- cellulose nanofibers --- polyvinyl alcohol --- directional freeze-drying --- oil absorption --- graphene oxide–platinum nanoparticles nanocomposites --- prostate cancer --- cytotoxicity --- oxidative stress --- mitochondrial membrane potential --- DNA damage --- conducting polymer --- PANI --- LEIS --- corrosion --- fabric --- cellulose nanocrystal --- thermal conductivity --- adhesives --- cohesive zone model --- finite element method --- graphene-polymer nanocomposite --- graphene/polymer interface --- molecular dynamics --- regressive softening law --- polysulfone foams --- tortuosity --- water vapor induced phase separation --- scCO2 --- toughening mechanisms --- graphene nanoplatelets --- recycled rubber --- Halpin–Tsai --- SEM --- light emitting diode --- phototherapy --- polyethylene glycol --- thermal reduction --- n/a --- graphene oxide-platinum nanoparticles nanocomposites --- Halpin-Tsai
Choose an application
Graphene-polymer nanocomposites continue to gain interest in diverse scientific and technological fields. Graphene-based nanomaterials present the advantages of other carbon nanofillers, like electrical and thermal conductivity, while having significantly lower production costs when compared to materials such as carbon nanotubes, for instance. In addition, in the oxidized forms of graphene, the large specific area combined with a large quantity of functionalizable chemical groups available for physical or chemical interaction with polymers, allow for good dispersion and tunable binding with the surrounding matrix. Other features are noteworthy in graphene-based nanomaterials, like their generally good biocompatibility and the ability to absorb near-infrared radiation, allowing for the use in biomedical applications, such as drug delivery and photothermal therapy.This Special Issue provides an encompassing view on the state of the art of graphene-polymer composites, showing how current research is dealing with new and exciting challenges. The published papers cover topics ranging from novel production methods and insights on mechanisms of mechanical reinforcement of composites, to applications as diverse as automotive and aeronautics, cancer treatment, anticorrosive coatings, thermally conductive fabrics and foams, and oil-adsorbent aerogels.
graphene oxide --- polymer composite fiber --- interfacial bonding --- polypropylene --- thermal stability --- graphene --- unsaturated polyester resins --- tung oil --- biobased polymer nanocomposites --- in situ melt polycondensation --- graphene polymer matrix composite --- polyamide 66 --- elongational flow --- hydrogen bond --- poly(trimethylene terephthalate) --- electrospinning --- composite fiber --- morphology --- crystallization --- electrical conductivity --- mechanical property --- elastic recovery --- cellulose nanofibers --- polyvinyl alcohol --- directional freeze-drying --- oil absorption --- graphene oxide–platinum nanoparticles nanocomposites --- prostate cancer --- cytotoxicity --- oxidative stress --- mitochondrial membrane potential --- DNA damage --- conducting polymer --- PANI --- LEIS --- corrosion --- fabric --- cellulose nanocrystal --- thermal conductivity --- adhesives --- cohesive zone model --- finite element method --- graphene-polymer nanocomposite --- graphene/polymer interface --- molecular dynamics --- regressive softening law --- polysulfone foams --- tortuosity --- water vapor induced phase separation --- scCO2 --- toughening mechanisms --- graphene nanoplatelets --- recycled rubber --- Halpin–Tsai --- SEM --- light emitting diode --- phototherapy --- polyethylene glycol --- thermal reduction --- n/a --- graphene oxide-platinum nanoparticles nanocomposites --- Halpin-Tsai
Choose an application
Graphene-polymer nanocomposites continue to gain interest in diverse scientific and technological fields. Graphene-based nanomaterials present the advantages of other carbon nanofillers, like electrical and thermal conductivity, while having significantly lower production costs when compared to materials such as carbon nanotubes, for instance. In addition, in the oxidized forms of graphene, the large specific area combined with a large quantity of functionalizable chemical groups available for physical or chemical interaction with polymers, allow for good dispersion and tunable binding with the surrounding matrix. Other features are noteworthy in graphene-based nanomaterials, like their generally good biocompatibility and the ability to absorb near-infrared radiation, allowing for the use in biomedical applications, such as drug delivery and photothermal therapy.This Special Issue provides an encompassing view on the state of the art of graphene-polymer composites, showing how current research is dealing with new and exciting challenges. The published papers cover topics ranging from novel production methods and insights on mechanisms of mechanical reinforcement of composites, to applications as diverse as automotive and aeronautics, cancer treatment, anticorrosive coatings, thermally conductive fabrics and foams, and oil-adsorbent aerogels.
Technology: general issues --- graphene oxide --- polymer composite fiber --- interfacial bonding --- polypropylene --- thermal stability --- graphene --- unsaturated polyester resins --- tung oil --- biobased polymer nanocomposites --- in situ melt polycondensation --- graphene polymer matrix composite --- polyamide 66 --- elongational flow --- hydrogen bond --- poly(trimethylene terephthalate) --- electrospinning --- composite fiber --- morphology --- crystallization --- electrical conductivity --- mechanical property --- elastic recovery --- cellulose nanofibers --- polyvinyl alcohol --- directional freeze-drying --- oil absorption --- graphene oxide-platinum nanoparticles nanocomposites --- prostate cancer --- cytotoxicity --- oxidative stress --- mitochondrial membrane potential --- DNA damage --- conducting polymer --- PANI --- LEIS --- corrosion --- fabric --- cellulose nanocrystal --- thermal conductivity --- adhesives --- cohesive zone model --- finite element method --- graphene-polymer nanocomposite --- graphene/polymer interface --- molecular dynamics --- regressive softening law --- polysulfone foams --- tortuosity --- water vapor induced phase separation --- scCO2 --- toughening mechanisms --- graphene nanoplatelets --- recycled rubber --- Halpin-Tsai --- SEM --- light emitting diode --- phototherapy --- polyethylene glycol --- thermal reduction
Choose an application
PART 1. Functional Textiles: Photochromic Textiles Based upon Aqueous Blends of Oxygen-Deficient WO3-x and TiO2 Nanocrystals. 50/60 Hz Power Grid Noise as a Skin Contact Measure of Textile ECG Electrodes. Characterizing Steam Penetration through Thermal Protective Fabric Materials. Stretchable Textile Yarn Based on UHF RFID Helical Tag. Fibers and Textiles for Personal Protective Equipment. Textile-Based Sound Sensors (TSS). High-Performance and Functional Fiber Materials. Geotextiles—A Versatile Tool for Environmental Sensitive Applications in Geotechnical Engineering. Review of Fiber- or Yarn-Based Wearable Resistive Strain Sensors. Wearable Actuators: An Overview. Bacterial Secondary Metabolites as Biopigments for Textile Dyeing. PART 2: Process and Modelling. Loop Order Analysis of Weft-Knitted Textiles. New Geometrical Modelling for 2D Fabric and 2.5D Interlock Composites. Meso-Macro Simulations of the Forming of 3D Non-Crimp Woven Fabrics. Continuous Yarn Electrospinning. A Review on Tough Soft Composites at Different Length Scales. Textile Branch and Main Breakthroughs of the Czech Republic in the Field of Textile Machinery. Recent Efforts in Modeling and Simulation of Textiles. PART 3: Control. A Comparison of Two Different Light Booths for Measuring Color Difference of Metameric Pairs. Effect of Textile Characteristics on the AR-Glass Fabric Efficiency. Dielectric Properties of Textile Materials. PART 4: Consumers and Behavior. Development of a Consumer-Based Quality Scale for Artisan Textiles. Organic Cotton Clothing Purchase Behavior. A Review on Textile Recycling Practices and Challenges.
Business strategy --- Manufacturing industries --- smart textiles --- wearable --- fiber actuators --- soft exoskeleton --- haptic action --- textile modeling --- homogenization --- beam-based model --- buckling --- folding --- spacer fabrics --- organic cotton --- clothing --- consumer behavior --- Theory of Reasoned Action --- alkali-resistant glass textile --- weaving --- epoxy coating --- filament diameters --- roving fineness --- fabric efficiency --- textile-reinforced concrete --- TRC --- fabric-reinforced cementitious matrix --- FRCM --- textile development --- human and civilization factors --- clothing and technical textiles --- open end spinning --- jet looms --- perpendicularly layered nonwovens --- needleless electrospinning --- textiles --- quality --- artisan --- fabrics --- women in textiles --- soft composite --- mechanical property --- toughness --- toughening mechanism --- fabrication --- application --- helical RFID tag --- helical antenna --- RFID --- textile yarn --- light booth --- metameric pairs --- visual assessment --- gray scale --- standard deviation --- CAM02-UCS --- color difference formula --- thermal protective fabrics --- steam exposure --- fabric properties --- heat and mass transfer --- burn injuries --- textile materials --- complex relative permittivity --- effective medium approximation --- dielectric mixture theory --- electromagnetics --- dielectric characterization --- resistive strain sensor --- fiber-based sensor --- yarn-based sensor --- interconnection --- forming simulation --- multi-scale analyses --- RVE --- hyperelasticity --- thick reinforcements --- nanofibers --- PAN --- cellulose acetate --- biopolymers --- spider silk --- silk fibroin --- 2D fabric --- 2.5D --- interlock composite --- compliance matrix --- textile waste --- reuse and recycling --- municipal solid waste --- composting --- sustainability --- geotextiles --- natural fibers --- synthetic fibers --- geo-engineering --- environmental applications --- high-performance fibers --- functional textiles --- metallized textiles --- inorganic fibers --- Scanning Electron Microscopy (SEM) --- Electron Dispersive Spectroscopy (EDS) --- microbial pigments --- bacterial pigments --- textile --- fibers --- dyeing --- electrocardiogram (ECG) --- Arduino --- electrodes --- conductive coating --- conductive yarn --- sensor --- knitted textiles --- topological modeling --- contact neighborhood --- loop order analysis --- precedence rule --- visualization --- e-textiles --- textile-based sound sensors --- sound monitoring --- smart building --- personal protective equipment --- protective clothing --- special textile structures --- smart textile --- photochromism --- inorganic nanoparticles --- n/a
Choose an application
With daily signals, Nature is communicating us that its unconscious wicked exploitation is no more sustainable. Our socio-economic system focuses on production increasing without considering the consequences. We are intoxicating ourselves on a daily bases just to allow the system to perpetuate itself. The time to switch into more natural solutions is come and the scientific community is ready to offer more natural product with comparable performance then the market products we are used to deal with. This book collects a broad set of scientific examples in which research groups from all over the world, aim to replace fossil fuel-based solutions with biomass derived materials. In here, some of the most innovative developments in the field of bio-materials are reported considering topics which goes from biomass valorization to the synthesis of high preforming bio-based materials.
chitosan --- graphene oxide --- microstructure --- autoxidation --- heavy metals --- polycaprolactone --- precipitation --- thermosetting polymers --- thermal degradation --- humidity sensor --- asphalt rubber --- tung oil --- nanobiocomposites --- ionic liquid --- GC-MS --- hybrid nonisocyanate polyurethane --- physicochemical properties --- alginate sponge --- Bioflex --- dimer acid --- bio-asphalt --- benzoyl cellulose --- Peptone --- transparent wood --- biocomposite --- nanoclays --- storage stability --- solvent- and catalyst-free --- microcellulose fiber --- lignin-containing cellulose nanofibrils --- polylactic acid (PLA) --- bio-inspired interfaces --- polyhydroxyalkanoates --- strain sensor --- enzymatic saccharification --- headspace solid phase microextraction --- PHBV --- electrical resistance --- melt condensation --- cement --- solution casting --- orange waste --- hybrid composites --- biopolymers --- TEMPO oxidation --- pollutant adsorbents --- Escherichia coli --- bio-nanocomposites --- TiO2 anatase --- metal binding --- liquid natural rubber --- hydrotropic treatment --- metal chloride --- feast-famine --- biomass resources --- wood --- electroless deposition --- one-pot synthesis --- thermoplastic starch --- films --- lignin-carbohydrate complex --- cellulose --- corn starch --- microencapsulated phase change material (MPCM) --- differential scanning calorimetry --- compatibility --- natural fibers --- workability --- silkworm cocoons --- lignin content --- polylactic acid --- porous structure --- electrospinning --- nanocellulose fibers --- H2O2 bleaching treatment --- polysaccharides --- mixing sequence --- porosity --- lignocellulosic nanofibrils --- dense structure --- alkali lignin --- polydopamine coating --- nuclear magnetic resonance --- cationic dyes --- poly(lactic acid) and composite films --- endothermic effect --- HSQC-NMR --- Microbial nutrient --- n/a --- toughening --- X-ray diffraction --- water resistance --- waste biomass --- lignin --- UV light --- ultrafiltration --- two-step lyophilization --- mechanical degradation --- bio-based --- methylene blue --- stearoyl cellulose --- ONP fibers --- anionic surfactants --- Hatscheck process --- osteoblast proliferation --- resource recovery --- dissolution --- copper coating --- bacterial cellulose --- hydrogel --- iron chelation --- knotwood --- sensitivity --- mixed microbial cultures --- dimensional stability --- volatiles --- lignocellulose --- Artemisia vulgaris --- surface modification --- PHA --- crosslinked microparticles --- pyrene --- composites --- galactoglucomannan --- polymeric composites --- kaempferol --- tannin-furanic foam --- Solanyl --- wastewater treatments --- adsorption capacity --- heat treatment --- thermal gravimetric analysis --- WAXS --- unsaturated polyester resins --- pulp fibers --- free-radical polymerization --- larixol --- delignification --- antifouling --- chemical composition --- hemicellulose --- tissue engineering --- extrusion-compounding --- membrane --- photodegradation --- structural plastics --- scanning electron microscope --- phenanthrene --- thermal properties --- immobilized TEMPO --- Staphylococcus aureus --- adsorption --- wood modification --- structure–property relationship --- physical property --- film --- mechanical properties --- tannin --- Bio-based foams --- latex state --- paper-based scaffolds --- skincare --- pyrolysis mechanism --- emulsion-solvent evaporation method --- bioplastics --- imidazolium --- fractionation --- cost --- fiber-cement --- lyocell fiber --- recycling --- kenaf fiber --- thermal stability --- transport properties --- SAXS --- silanization --- cellulose nanofibers --- taxifolin --- tannin polymer --- vibrational spectroscopy --- robust fiber network --- nanocelluloses --- poly(lactic acid) --- Anti-bacterial silver nanoparticle --- cellulose nanocrystals --- structure-property relationship
Listing 1 - 10 of 10 |
Sort by
|