Listing 1 - 10 of 14 | << page >> |
Sort by
|
Choose an application
A new science emerges at the intersection of modern physics, computer s- ence,andmaterialscience. Thestruggletofurtherminiaturizeisputtingna- technology to the verge of creating single-electron and/or single-spin devices that operate by moving a single electron (spin) and can serve as transistors, memory cells, and for logic gates. These devices take advantage of quantum physics that dominates nanometer size scales. The devices that utilize met- based hybrid nanostructures may possess signi?cant advantages over those exploiting purely semiconducting materials. First, the chemistry of metals is typically simpler than that of semiconductors. Second, the electric properties of metals are much less sensitive to the structural defects and impurities than those of semiconductors. Next, metallic devices allow better electric and th- mal contacts. Another important plus point is that in metals the electron de Broigle wavelength is smaller by many orders of magnitude as compared to that in semiconductors. This makes metallic devices more promising with respect to their size - down to the size of an atom. Further, high bulk and interface thermal conductance in metallic devices are bene?cial for the heat withdraw. And, last but by no means the least, the high electron velocity in metals promises to accelerate enormously operation rates with respect to those in semiconductor-based devices. The ?nal note is that metals can - hibit strong ferromagnetism and/or superconductivity.
Quantum theory --- Transport theory --- Nanostructured materials --- Physics. --- Quantum physics. --- Condensed matter. --- Superconductivity. --- Superconductors. --- Magnetism. --- Magnetic materials. --- Quantum computers. --- Spintronics. --- Quantum Physics. --- Condensed Matter Physics. --- Strongly Correlated Systems, Superconductivity. --- Magnetism, Magnetic Materials. --- Quantum Information Technology, Spintronics. --- Magnetoelectronics --- Spin electronics --- Microelectronics --- Nanotechnology --- Computers --- Materials --- Mathematical physics --- Physics --- Electricity --- Magnetics --- Superconducting materials --- Superconductive devices --- Cryoelectronics --- Electronics --- Solid state electronics --- Electric conductivity --- Critical currents --- Superfluidity --- Condensed materials --- Condensed media --- Condensed phase --- Materials, Condensed --- Media, Condensed --- Phase, Condensed --- Liquids --- Matter --- Solids --- Quantum dynamics --- Quantum mechanics --- Quantum physics --- Mechanics --- Thermodynamics --- Natural philosophy --- Philosophy, Natural --- Physical sciences --- Dynamics --- Quantum theory. --- Fluxtronics --- Spinelectronics --- Quantum transport --- Metallic nanostructures --- Hybrid nanostructures --- NATO
Choose an application
This book presents the current views of leading physicists on the bizarre property of quantum theory: nonlocality. Einstein viewed this theory as "spooky action at a distance" which, together with randomness, resulted in him being unable to accept quantum theory. The contributions in the book describe, in detail, the bizarre aspects of nonlocality, such as Einstein-Podolsky-Rosen steering and quantum teleportation-a phenomenon which cannot be explained in the framework of classical physics, due its foundations in quantum entanglement. The contributions describe the role of nonlocality in the rapidly developing field of quantum information. Nonlocal quantum effects in various systems, from solid-state quantum devices to organic molecules in proteins, are discussed. The most surprising papers in this book challenge the concept of the nonlocality of Nature, and look for possible modifications, extensions, and new formulations-from retrocausality to novel types of multiple-world theories. These attempts have not yet been fully successful, but they provide hope for modifying quantum theory according to Einstein's vision.
Stern–Gerlach experiment --- channel entropy --- non-locality --- nonsignaling --- retro-causal channel --- communication complexity --- controlled-NOT --- Bell test --- quantum measurement --- quantum mechanics --- quantum transport --- semiconductor nanodevices --- optimization --- quantum correlation --- PR Box --- non-linear Schrödinger model --- retrocausality --- entanglement --- device-independent --- Einstein–Podolsky–Rosen argument --- quantum nonlocality --- parallel lives --- PR box --- nonlocal correlations --- hypothesis testing --- quantum bounds --- channel capacity --- Wigner-function simulations --- quantum correlations --- quantum --- pre- and post-selected systems --- local hidden variables --- density-matrix formalism --- collapse of the quantum state --- local polytope --- quantum teleportation of unknown qubit --- parity measurements --- uncertainty relations --- nonlocality --- hybrid entanglement --- selectivity filter --- p-value --- steering --- axioms for quantum theory --- no-signalling --- ion channels --- KS Box --- EPR steering --- local realism --- Non-contextuality inequality --- entropic uncertainty relation --- continuous-variable states --- nonlocal dissipation models --- Bell’s theorem --- tsallis entropy --- classical limit --- general entropies --- pigeonhole principle --- biological quantum decoherence --- discrete-variable states
Choose an application
The start of high-volume production of field-effect transistors with a feature size below 100 nm at the end of the 20th century signaled the transition from microelectronics to nanoelectronics. Since then, downscaling in the semiconductor industry has continued until the recent development of sub-10 nm technologies. The new phenomena and issues as well as the technological challenges of the fabrication and manipulation at the nanoscale have spurred an intense theoretical and experimental research activity. New device structures, operating principles, materials, and measurement techniques have emerged, and new approaches to electronic transport and device modeling have become necessary. Examples are the introduction of vertical MOSFETs in addition to the planar ones to enable the multi-gate approach as well as the development of new tunneling, high-electron mobility, and single-electron devices. The search for new materials such as nanowires, nanotubes, and 2D materials for the transistor channel, dielectrics, and interconnects has been part of the process. New electronic devices, often consisting of nanoscale heterojunctions, have been developed for light emission, transmission, and detection in optoelectronic and photonic systems, as well for new chemical, biological, and environmental sensors. This Special Issue focuses on the design, fabrication, modeling, and demonstration of nanodevices for electronic, optoelectronic, and sensing applications.
Technology: general issues --- History of engineering & technology --- concentrator systems --- GaInP/GaInAs/Ge --- multi-junction --- photovoltaics --- solar cells --- space --- triple-junction --- FeFET --- ferroelectric --- nonvolatile --- semiconductor memory --- SBT --- nanoantennas --- optics --- optoelectronic devices --- photovoltaic technology --- rectennas --- resistive memories --- thermal model --- heat equation --- thermal conductivity --- circuit simulation --- compact modeling --- resistive switching --- nanodevices --- power conversion efficiency --- MXenes --- electrodes --- additives --- HTL/ETL --- design of experiments --- GFET --- graphene --- high-frequency --- RF devices --- tolerance analysis --- molybdenum oxides --- green synthesis --- biological chelator --- additional capacity --- anodes --- lithium-ion batteries --- carbon nanotube --- junctionless --- tunnel field effect transistors --- chemical doping --- electrostatic doping --- NEGF simulation --- band-to-band tunneling --- switching performance --- nanoscale --- phosphorene --- black phosphorus --- nanoribbon --- edge contact --- contact resistance --- quantum transport --- NEGF --- metallization --- broadening --- zigzag carbon nanotube --- armchair-edge graphene nanoribbon --- quantum simulation --- sub-10 nm --- phototransistors --- photosensitivity --- subthreshold swing --- GaN HEMTs --- scaling --- electron mobility --- scattering --- polarization charge --- 2D materials --- rhenium --- selenides --- ReSe2 --- field-effect transistor --- pressure --- negative photoconductivity --- n/a
Choose an application
The field of chaos in many-body quantum systems has a long history, going back to Wigner’s simple models for heavy nuclei. Quantum chaos is being investigated in a broad variety of experimental platforms such as heavy nuclei, driven (few-electron) atoms, ultracold quantum gases, and photonic or microwave realizations. Quantum chaos plays a new and important role in many branches of physics, from condensed matter problems of many-body localization, including thermalization studies in closed and open quantum systems, and the question of dynamical stability relevant for quantum information and quantum simulation. This Special Issue and its related book address theories and experiments, methods from classical chaos, semiclassics, and random matrix theory, as well as many-body condensed matter physics. It is dedicated to Prof. Shmuel Fishman, who was one of the major representatives of the field over almost four decades, who passed away in 2019.
Research & information: general --- quantum chaos --- decoherence --- Arnol’d cat --- classical limit --- correspondence principle --- cold atoms --- interacting fermions --- thermalization --- dynamical chaos --- Sinai oscillator --- quantum tunneling --- dissipation --- effective action --- quantum transport --- nonlinear Schrödinger equation --- Gross-Pitaevskii equation --- Schrödinger-Poisson equation --- Bose-Einstein condensate --- dark matter --- periodically kicked system --- Lorentzian potential --- topological horseshoe --- uniformly hyperbolicity --- sector condition --- fractal Weyl law --- survival probability --- correlation functions --- semiclassical approximation --- revival dynamics --- Morse oscillator --- atom-optics kicked rotor --- quantum resonance --- continuous-time quantum walks --- Bose–Einstein condensates --- quantum interference --- Aubry-André model --- correlation hole --- fluctuation theorems --- nonequilibrium statistical mechanics --- quantum thermodynamics --- phase transitions --- Dirac bosons --- mean field analysis --- adiabatic separation --- trapped ions --- Frenkel–Kontorova --- long–range interactions --- sine-Gordon kink --- quantum kicked rotor --- Anderson localisation --- dynamical localisation
Choose an application
In the last few years, the leading semiconductor industries have introduced multi-gate non-planar transistors into their core business. These are being applied in memories and in logical integrated circuits to achieve better integration on the chip, increased performance, and reduced energy consumption. Intense research is underway to develop these devices further and to address their limitations, in order to continue transistor scaling while further improving performance. This Special Issue looks at recent developments in the field of nanowire field-effect transistors (NW-FETs), covering different aspects of the technology, physics, and modelling of these nanoscale devices.
History of engineering & technology --- random dopant --- drift-diffusion --- variability --- device simulation --- nanodevice --- screening --- Coulomb interaction --- III-V --- TASE --- MOSFETs --- Integration --- nanowire field-effect transistors --- silicon nanomaterials --- charge transport --- one-dimensional multi-subband scattering models --- Kubo–Greenwood formalism --- schrödinger-poisson solvers --- DC and AC characteristic fluctuations --- gate-all-around --- nanowire --- work function fluctuation --- aspect ratio of channel cross-section --- timing fluctuation --- noise margin fluctuation --- power fluctuation --- CMOS circuit --- statistical device simulation --- variability effects --- Monte Carlo --- Schrödinger based quantum corrections --- quantum modeling --- nonequilibrium Green’s function --- nanowire transistor --- electron–phonon interaction --- phonon–phonon interaction --- self-consistent Born approximation --- lowest order approximation --- Padé approximants --- Richardson extrapolation --- ZnO --- field effect transistor --- conduction mechanism --- metal gate --- material properties --- fabrication --- modelling --- nanojunction --- constriction --- quantum electron transport --- quantum confinement --- dimensionality reduction --- stochastic Schrödinger equations --- geometric correlations --- silicon nanowires --- nano-transistors --- quantum transport --- hot electrons --- self-cooling --- nano-cooling --- thermoelectricity --- heat equation --- non-equilibrium Green functions --- power dissipation
Choose an application
The field of chaos in many-body quantum systems has a long history, going back to Wigner’s simple models for heavy nuclei. Quantum chaos is being investigated in a broad variety of experimental platforms such as heavy nuclei, driven (few-electron) atoms, ultracold quantum gases, and photonic or microwave realizations. Quantum chaos plays a new and important role in many branches of physics, from condensed matter problems of many-body localization, including thermalization studies in closed and open quantum systems, and the question of dynamical stability relevant for quantum information and quantum simulation. This Special Issue and its related book address theories and experiments, methods from classical chaos, semiclassics, and random matrix theory, as well as many-body condensed matter physics. It is dedicated to Prof. Shmuel Fishman, who was one of the major representatives of the field over almost four decades, who passed away in 2019.
quantum chaos --- decoherence --- Arnol’d cat --- classical limit --- correspondence principle --- cold atoms --- interacting fermions --- thermalization --- dynamical chaos --- Sinai oscillator --- quantum tunneling --- dissipation --- effective action --- quantum transport --- nonlinear Schrödinger equation --- Gross-Pitaevskii equation --- Schrödinger-Poisson equation --- Bose-Einstein condensate --- dark matter --- periodically kicked system --- Lorentzian potential --- topological horseshoe --- uniformly hyperbolicity --- sector condition --- fractal Weyl law --- survival probability --- correlation functions --- semiclassical approximation --- revival dynamics --- Morse oscillator --- atom-optics kicked rotor --- quantum resonance --- continuous-time quantum walks --- Bose–Einstein condensates --- quantum interference --- Aubry-André model --- correlation hole --- fluctuation theorems --- nonequilibrium statistical mechanics --- quantum thermodynamics --- phase transitions --- Dirac bosons --- mean field analysis --- adiabatic separation --- trapped ions --- Frenkel–Kontorova --- long–range interactions --- sine-Gordon kink --- quantum kicked rotor --- Anderson localisation --- dynamical localisation
Choose an application
In the last few years, the leading semiconductor industries have introduced multi-gate non-planar transistors into their core business. These are being applied in memories and in logical integrated circuits to achieve better integration on the chip, increased performance, and reduced energy consumption. Intense research is underway to develop these devices further and to address their limitations, in order to continue transistor scaling while further improving performance. This Special Issue looks at recent developments in the field of nanowire field-effect transistors (NW-FETs), covering different aspects of the technology, physics, and modelling of these nanoscale devices.
random dopant --- drift-diffusion --- variability --- device simulation --- nanodevice --- screening --- Coulomb interaction --- III-V --- TASE --- MOSFETs --- Integration --- nanowire field-effect transistors --- silicon nanomaterials --- charge transport --- one-dimensional multi-subband scattering models --- Kubo–Greenwood formalism --- schrödinger-poisson solvers --- DC and AC characteristic fluctuations --- gate-all-around --- nanowire --- work function fluctuation --- aspect ratio of channel cross-section --- timing fluctuation --- noise margin fluctuation --- power fluctuation --- CMOS circuit --- statistical device simulation --- variability effects --- Monte Carlo --- Schrödinger based quantum corrections --- quantum modeling --- nonequilibrium Green’s function --- nanowire transistor --- electron–phonon interaction --- phonon–phonon interaction --- self-consistent Born approximation --- lowest order approximation --- Padé approximants --- Richardson extrapolation --- ZnO --- field effect transistor --- conduction mechanism --- metal gate --- material properties --- fabrication --- modelling --- nanojunction --- constriction --- quantum electron transport --- quantum confinement --- dimensionality reduction --- stochastic Schrödinger equations --- geometric correlations --- silicon nanowires --- nano-transistors --- quantum transport --- hot electrons --- self-cooling --- nano-cooling --- thermoelectricity --- heat equation --- non-equilibrium Green functions --- power dissipation
Choose an application
The field of chaos in many-body quantum systems has a long history, going back to Wigner’s simple models for heavy nuclei. Quantum chaos is being investigated in a broad variety of experimental platforms such as heavy nuclei, driven (few-electron) atoms, ultracold quantum gases, and photonic or microwave realizations. Quantum chaos plays a new and important role in many branches of physics, from condensed matter problems of many-body localization, including thermalization studies in closed and open quantum systems, and the question of dynamical stability relevant for quantum information and quantum simulation. This Special Issue and its related book address theories and experiments, methods from classical chaos, semiclassics, and random matrix theory, as well as many-body condensed matter physics. It is dedicated to Prof. Shmuel Fishman, who was one of the major representatives of the field over almost four decades, who passed away in 2019.
Research & information: general --- quantum chaos --- decoherence --- Arnol’d cat --- classical limit --- correspondence principle --- cold atoms --- interacting fermions --- thermalization --- dynamical chaos --- Sinai oscillator --- quantum tunneling --- dissipation --- effective action --- quantum transport --- nonlinear Schrödinger equation --- Gross-Pitaevskii equation --- Schrödinger-Poisson equation --- Bose-Einstein condensate --- dark matter --- periodically kicked system --- Lorentzian potential --- topological horseshoe --- uniformly hyperbolicity --- sector condition --- fractal Weyl law --- survival probability --- correlation functions --- semiclassical approximation --- revival dynamics --- Morse oscillator --- atom-optics kicked rotor --- quantum resonance --- continuous-time quantum walks --- Bose–Einstein condensates --- quantum interference --- Aubry-André model --- correlation hole --- fluctuation theorems --- nonequilibrium statistical mechanics --- quantum thermodynamics --- phase transitions --- Dirac bosons --- mean field analysis --- adiabatic separation --- trapped ions --- Frenkel–Kontorova --- long–range interactions --- sine-Gordon kink --- quantum kicked rotor --- Anderson localisation --- dynamical localisation
Choose an application
In the last few years, the leading semiconductor industries have introduced multi-gate non-planar transistors into their core business. These are being applied in memories and in logical integrated circuits to achieve better integration on the chip, increased performance, and reduced energy consumption. Intense research is underway to develop these devices further and to address their limitations, in order to continue transistor scaling while further improving performance. This Special Issue looks at recent developments in the field of nanowire field-effect transistors (NW-FETs), covering different aspects of the technology, physics, and modelling of these nanoscale devices.
History of engineering & technology --- random dopant --- drift-diffusion --- variability --- device simulation --- nanodevice --- screening --- Coulomb interaction --- III-V --- TASE --- MOSFETs --- Integration --- nanowire field-effect transistors --- silicon nanomaterials --- charge transport --- one-dimensional multi-subband scattering models --- Kubo–Greenwood formalism --- schrödinger-poisson solvers --- DC and AC characteristic fluctuations --- gate-all-around --- nanowire --- work function fluctuation --- aspect ratio of channel cross-section --- timing fluctuation --- noise margin fluctuation --- power fluctuation --- CMOS circuit --- statistical device simulation --- variability effects --- Monte Carlo --- Schrödinger based quantum corrections --- quantum modeling --- nonequilibrium Green’s function --- nanowire transistor --- electron–phonon interaction --- phonon–phonon interaction --- self-consistent Born approximation --- lowest order approximation --- Padé approximants --- Richardson extrapolation --- ZnO --- field effect transistor --- conduction mechanism --- metal gate --- material properties --- fabrication --- modelling --- nanojunction --- constriction --- quantum electron transport --- quantum confinement --- dimensionality reduction --- stochastic Schrödinger equations --- geometric correlations --- silicon nanowires --- nano-transistors --- quantum transport --- hot electrons --- self-cooling --- nano-cooling --- thermoelectricity --- heat equation --- non-equilibrium Green functions --- power dissipation
Choose an application
Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.
Technology: general issues --- quantum transport --- quantum interference --- shot noise --- persistent current --- mesoscale and nanoscale physics --- Complementary Metal Oxide Semiconductor (CMOS) technology --- electron quantum optics --- photo-assisted noise --- charge and heat fluctuations --- time-dependent transport --- electron–photon coupling --- open quantum systems --- phonon transport --- nanostructured materials --- green’s functions --- density-functional tight binding --- Landauer approach, time-dependent transport --- graphene nanoribbons --- nonequilibrium Green’s function --- electronic transport --- thermal transport --- strongly correlated systems --- Landauer-Büttiker formalism --- Boltzmann transport equation --- time-dependent density functional theory --- electron–phonon coupling --- molecular junctions --- thermoelectric properties --- electron–vibration interactions --- electron–electron interactions --- thermoelectricity --- heat engines --- mesoscopic physics --- fluctuations --- thermodynamic uncertainty relations --- quantum thermodynamics --- steady-state dynamics --- nonlinear transport --- adiabatic quantum motors --- adiabatic quantum pumps --- quantum heat engines --- quantum refrigerators --- transport through quantum dots --- spin pump --- spin-orbit interaction --- quantum adiabatic pump --- interferometer --- geometric phase --- nonadiabaticity --- quantum heat pumping --- spin pumping --- relaxation --- time evolution --- quantum information --- entropy production --- Renyi entropy --- superconducting proximity effect --- Kondo effect --- spin polarization --- Anreev reflection --- conditional states --- conditional wavefunction --- Markovian and Non-Markovian dynamics --- stochastic Schrödinger equation --- quantum electron transport --- quantum dots --- fluctuation–dissipation theorem --- Onsager relations --- dynamics of strongly correlated quantum systems --- quantum capacitor --- local fermi liquids --- kondo effect --- coulomb blockade --- mesoscopic systems --- nanophysics --- quantum noise --- quantum pumping --- thermoelectrics --- heat transport
Listing 1 - 10 of 14 | << page >> |
Sort by
|