Narrow your search

Library

KU Leuven (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

VIVES (4)

VUB (3)

UGent (2)

FARO (1)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2020 (1)

2016 (1)

2013 (1)

2012 (2)

Listing 1 - 5 of 5
Sort by

Book
Agent-based modelling in population studies : concepts, methods, and applications
Authors: ---
ISBN: 9783319322810 9783319322834 3319322818 Year: 2016 Publisher: New York, NY: Springer,


Book
Developments in demographic forecasting
Authors: --- ---
ISBN: 3030424715 3030424723 Year: 2020 Publisher: Springer Nature

Loading...
Export citation

Choose an application

Bookmark

Abstract

This open access book presents new developments in the field of demographic forecasting, covering both mortality, fertility and migration. For each component emerging methods to forecast them are presented. Moreover, instruments for forecasting evaluation are provided. Bayesian models, nonparametric models, cohort approaches, elicitation of expert opinion, evaluation of probabilistic forecasts are some of the topics covered in the book. In addition, the book is accompanied by complementary material on the web allowing readers to practice with some of the ideas exposed in the book. Readers are encouraged to use this material to apply the new methods to their own data. The book is an important read for demographers, applied statisticians, as well as other social scientists interested or active in the field of population forecasting. Professional population forecasters in statistical agencies will find useful new ideas in various chapters.


Book
Mathematical tools for understanding infectious diseases dynamics
Authors: --- ---
ISBN: 1283578751 9786613891204 1400845629 9781400845620 9781283578752 9780691155395 0691155399 Year: 2012 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mathematical modeling is critical to our understanding of how infectious diseases spread at the individual and population levels. This book gives readers the necessary skills to correctly formulate and analyze mathematical models in infectious disease epidemiology, and is the first treatment of the subject to integrate deterministic and stochastic models and methods. Mathematical Tools for Understanding Infectious Disease Dynamics fully explains how to translate biological assumptions into mathematics to construct useful and consistent models, and how to use the biological interpretation and mathematical reasoning to analyze these models. It shows how to relate models to data through statistical inference, and how to gain important insights into infectious disease dynamics by translating mathematical results back to biology. This comprehensive and accessible book also features numerous detailed exercises throughout; full elaborations to all exercises are provided. Covers the latest research in mathematical modeling of infectious disease epidemiology Integrates deterministic and stochastic approaches Teaches skills in model construction, analysis, inference, and interpretation Features numerous exercises and their detailed elaborations Motivated by real-world applications throughout

Keywords

Epidemiology --- Communicable diseases --- Contagion and contagious diseases --- Contagious diseases --- Infectious diseases --- Microbial diseases in human beings --- Zymotic diseases --- Mathematical models --- Mathematical models. --- Diseases --- Infection --- Epidemics --- Public health --- Bayesian statistical inference. --- ICU model. --- Markov chain Monte Carlo method. --- Markov chain Monte Carlo methods. --- ReedІrost epidemic. --- age structure. --- asymptotic speed. --- bacterial infections. --- biological interpretation. --- closed population. --- compartmental epidemic systems. --- consistency conditions. --- contact duration. --- demography. --- dependence. --- disease control. --- disease outbreaks. --- disease prevention. --- disease transmission. --- endemic. --- epidemic models. --- epidemic outbreak. --- epidemic. --- epidemiological models. --- epidemiological parameters. --- epidemiology. --- general epidemic. --- growth rate. --- homogeneous community. --- hospital infections. --- hospital patients. --- host population growth. --- host. --- human social behavior. --- i-states. --- individual states. --- infected host. --- infection transmission. --- infection. --- infectious disease epidemiology. --- infectious disease. --- infectious diseases. --- infectious output. --- infective agent. --- infectivity. --- intensive care units. --- intrinsic growth rate. --- larvae. --- macroparasites. --- mathematical modeling. --- mathematical reasoning. --- maximum likelihood estimation. --- microparasites. --- model construction. --- outbreak situations. --- outbreak. --- pair approximation. --- parasite load. --- parasite. --- population models. --- propagation speed. --- reproduction number. --- separable mixing. --- sexual activity. --- stochastic epidemic model. --- structured population models. --- susceptibility. --- vaccination.


Book
Population and community ecology of ontogenetic development
Authors: ---
ISBN: 1299051278 1400845610 9781400845613 9781299051270 9780691137575 0691137579 Year: 2013 Volume: 51 Publisher: Princeton Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Most organisms show substantial changes in size or morphology after they become independent of their parents and have to find their own food. Furthermore, the rate at which these changes occur generally depends on the amount of food they ingest. In this book, André de Roos and Lennart Persson advance a synthetic and individual-based theory of the effects of this plastic ontogenetic development on the dynamics of populations and communities. De Roos and Persson show how the effects of ontogenetic development on ecological dynamics critically depend on the efficiency with which differently sized individuals convert food into new biomass. Differences in this efficiency--or ontogenetic asymmetry--lead to bottlenecks in and thus population regulation by either maturation or reproduction. De Roos and Persson investigate the community consequences of these bottlenecks for trophic configurations that vary in the number and type of interacting species and in the degree of ontogenetic niche shifts exhibited by their individuals. They also demonstrate how insights into the effects of maturation and reproduction limitation on community equilibrium carry over to the dynamics of size-structured populations and give rise to different types of cohort-driven cycles. Featuring numerous examples and tests of modeling predictions, this book provides a pioneering and extensive theoretical and empirical treatment of the ecology of ontogenetic growth and development in organisms, emphasizing the importance of an individual-based perspective for understanding population and community dynamics.

Keywords

Ontogeny. --- Niche (Ecology) --- Animal populations. --- Ontogenesis --- Biology --- Embryology --- Developmental biology --- Microhabitat --- Biotic communities --- Competition (Biology) --- Ecology --- Habitat (Ecology) --- Demography, Wildlife --- Populations, Animal --- Wildlife demography --- Wildlife populations --- Animal ecology --- Population biology --- Niche (Ecology). --- Allee effect. --- Daphnia. --- Escalator Boxcar Train. --- bioenergentics. --- biomass overcompensation. --- cannibalism. --- cladoceran zooplankton. --- coexistence. --- cohort cycles. --- community structure. --- competition. --- consumer life history. --- consumer population. --- consumer-resource dynamics. --- consumer-resource systems. --- demand-driven systems. --- development. --- discrete reproduction. --- ecological dynamics. --- ecology. --- energetics. --- energy gain. --- foraging. --- interspecific competition. --- maturation. --- metabolic rates. --- metabolism. --- morphology. --- mortality. --- niche overlaps. --- ontogenetic asymmetry. --- ontogenetic development. --- ontogenetic diet shifts. --- ontogenetic niche shifts. --- ontogenetic symmetry. --- overcompensation. --- population dynamics. --- population models. --- population regulation. --- predation. --- predator life history. --- predators. --- prey availability. --- prey life history. --- prey. --- reproduction control. --- reproduction. --- resource competition. --- size dependence. --- size-structured prey ecology. --- stage-structured prey. --- supply-driven systems.


Book
Food webs
Author:
ISBN: 1283290715 9786613290717 1400840686 9781400840687 9780691134178 0691134170 9780691134185 0691134189 9781283290715 Year: 2012 Publisher: Princeton

Loading...
Export citation

Choose an application

Bookmark

Abstract

Human impacts are dramatically altering our natural ecosystems but the exact repercussions on ecological sustainability and function remain unclear. As a result, food web theory has experienced a proliferation of research seeking to address these critical areas. Arguing that the various recent and classical food web theories can be looked at collectively and in a highly consistent and testable way, Food Webs synthesizes and reconciles modern and classical perspectives into a general unified theory. Kevin McCann brings together outcomes from population-, community-, and ecosystem-level approaches under the common currency of energy or material fluxes. He shows that these approaches--often studied in isolation--all have the same general implications in terms of population dynamic stability. Specifically, increased fluxes of energy or material tend to destabilize populations, communities, and whole ecosystems. With this understanding, stabilizing structures at different levels of the ecological hierarchy can be identified and any population-, community-, or ecosystem-level structures that mute energy or material flow also stabilize systems dynamics. McCann uses this powerful general framework to discuss the effects of human impact on the stability and sustainability of ecological systems, and he demonstrates that there is clear empirical evidence that the structures supporting ecological systems have been dangerously eroded. Uniting the latest research on food webs with classical theories, this book will be a standard source in the understanding of natural food web functions.

Keywords

SCIENCE / Life Sciences / Biology / General. --- SCIENCE / Life Sciences / Ecology. --- Biotic communities. --- Food chains (Ecology) --- Biocenoses --- Biocoenoses --- Biogeoecology --- Biological communities --- Biomes --- Biotic community ecology --- Communities, Biotic --- Community ecology, Biotic --- Ecological communities --- Ecosystems --- Natural communities --- Ecology --- Population biology --- Food webs (Ecology) --- Trophic ecology --- Animals --- Nutrient cycles --- Food --- Canadian Shield. --- Gershgorin discs. --- Hopf bifurcation. --- Robert Holt. --- adaptive behavior. --- alternative stable states. --- aquatic microcosm. --- asynchrony. --- bifurcation. --- bird feeder effect. --- body size. --- competition. --- consumers. --- consumerвesource dynamics. --- consumerвesource interactions. --- consumerвesource models. --- consumerвesource theory. --- continuous logistic growth models. --- detritus. --- diamond food web. --- discrete equations. --- dynamical systems theory. --- dynamical systems. --- ecological instability. --- ecological stability. --- ecological systems. --- ecosystem collapse. --- ecosystem dynamics. --- ecosystem size. --- ecosystem stability. --- ecosystems. --- eigenvalue. --- equilibrium steady state. --- equilibrium. --- excitable interactions. --- food chains. --- food web structure. --- food web theory. --- food webs. --- foraging. --- generalism. --- generalists. --- grazing. --- habitat. --- human impacts. --- interaction strength. --- intraguild predation model. --- lags. --- lake trout. --- local stability analysis. --- matrix theory. --- microcosm experiments. --- mobile adaptive predators. --- modular theory. --- module. --- motif. --- natural ecosystems. --- nature. --- nonequilibrium dynamics. --- nonequilibrium steady state. --- nonexcitable interactions. --- nutrient decomposition. --- nutrient recycling. --- nutrients. --- omnivory. --- oscillation. --- oscillatory decay. --- phase space. --- population dynamics. --- population growth. --- population models. --- population structure. --- populations. --- resources. --- space. --- species. --- stage structure. --- stage-structured lags. --- subsidies. --- subsystems. --- sustainability. --- time series. --- trade-offs. --- traits. --- whole-community approach. --- whole-system matrix.

Listing 1 - 5 of 5
Sort by