Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULiège (3)

VIVES (3)

Vlaams Parlement (3)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (3)

2020 (2)

2019 (1)

Listing 1 - 6 of 6
Sort by

Book
Fungal Pathogenesis in Humans : The Growing Threat
Author:
ISBN: 3038979015 3038979007 9783038979012 Year: 2019 Publisher: Basel, Switzerland : MDPI,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Dear Colleagues, Cancer survival rates and successful organ transplantation in patients continues to increase due to improvements in early diagnosis and treatments. Since immuno-suppressive therapies are frequently used, the mortality rate due to secondary infections has become an ever-increasing problem. Opportunistic fungal infections are probably the deadliest threat to these patients due to their difficult early diagnosis, the limited effect of antifungal drugs and the appearance of resistances. In recent years, a considerable effort has been devoted to investigating the role of many virulence traits in the pathogenic outcome of fungal infections. New virulence factors (hypoxia adaptation, CO2 sensing, pH regulation, micronutrient acquisition, secondary metabolites, immunity regulators, etc.) have been reported and their molecular mechanisms of action are being thoroughly investigated. The recent application of gene-editing technologies such as CRISPr-Cas9, has opened a whole new window to the discovery of new fungal virulence factors. Accurate fungal genotyping, Next Generation Sequencing and RNAseq approaches will undoubtedly provide new clues to interpret the plethora of molecular interactions controlling these complex systems. Unraveling their intimate regulatory details will provide insights for a more target-focused search or a rational design of more specific antifungal agents. This Special Issue is show significant discoveries, proofs of concept of new theories or relevant observations in fungal pathogenesis and its regulation. Dr. Fernando Leal Guest Editor


Book
Paradox Role of Oxidative Stress in Cancer : State of the Art
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Reactive oxygen species (ROS) are produced by healthy cells and are maintained at physiological levels by antioxidant systems. However, when ROS increase in number, a condition of oxidative stress occurs, leading to many human diseases, including cancer. The relationship between oxidative stress and cancer is complex since ROS play a double-edged role in cancer development and under therapy response. This paradox represents a great challenge for researchers and needs to be investigated. The articles collected in this Special Issue can help to clarify the role of ROS modulation in cancer prevention and treatment, and to dissect the molecular mechanisms underlying its paradoxical role in order to counteract carcinogenesis or enhance sensitivity to anticancer therapy.


Book
Paradox Role of Oxidative Stress in Cancer : State of the Art
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Reactive oxygen species (ROS) are produced by healthy cells and are maintained at physiological levels by antioxidant systems. However, when ROS increase in number, a condition of oxidative stress occurs, leading to many human diseases, including cancer. The relationship between oxidative stress and cancer is complex since ROS play a double-edged role in cancer development and under therapy response. This paradox represents a great challenge for researchers and needs to be investigated. The articles collected in this Special Issue can help to clarify the role of ROS modulation in cancer prevention and treatment, and to dissect the molecular mechanisms underlying its paradoxical role in order to counteract carcinogenesis or enhance sensitivity to anticancer therapy.


Book
Paradox Role of Oxidative Stress in Cancer : State of the Art
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Reactive oxygen species (ROS) are produced by healthy cells and are maintained at physiological levels by antioxidant systems. However, when ROS increase in number, a condition of oxidative stress occurs, leading to many human diseases, including cancer. The relationship between oxidative stress and cancer is complex since ROS play a double-edged role in cancer development and under therapy response. This paradox represents a great challenge for researchers and needs to be investigated. The articles collected in this Special Issue can help to clarify the role of ROS modulation in cancer prevention and treatment, and to dissect the molecular mechanisms underlying its paradoxical role in order to counteract carcinogenesis or enhance sensitivity to anticancer therapy.


Book
Killing Cancer : Discovery and Selection of New Target Molecules
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Despite the efficiency of current cancer treatments, cancer is still a deadly disease for too many. In 2008, 7.6 million people died of cancer; with the current development, it is estimated that the annual cancer death number will grow to 13 million by 2030. There is clearly a need for not only more research but also more innovative and out of the mainstream scientific ideas to discover and develop even better cancer treatments. This book presents the collective works published in the recent Special Issue entitled “Killing Cancer: Discovery and Selection of New Target Molecules”. These articles comprise a selection of studies, ideas, and opinions that aim to facilitate knowledge, thoughts, and discussion about which biological and molecular mechanisms in cancer we should target and how we should target them.

Keywords

ferlin --- myoferlin --- dysferlin --- otoferlin --- C2 domain --- plasma membrane --- sulconazole --- NF-κB --- IL-8 --- mammosphere --- breast cancer stem cells --- AF1Q --- MLLT11 --- WNT --- STAT --- esophageal cancer --- prognosis --- mTORC1 --- mTORC2 --- metabolism --- rapalogs --- mTOR inhibitors --- cancer metabolism --- mTOR in immunotherapy --- nutrient metabolism --- kinase inhibitors --- mTOR signaling --- MAPK kinase --- ERK1 --- ERK2 --- CD domain --- Rolled --- SCH772984 --- VRT-11E --- sevenmaker --- cancer therapy --- EMT --- lysosome --- lysosome-mediated invasion --- MZF1 --- phosphorylation --- PAK4 --- SUMOylation --- transcription factor --- zinc finger --- glucocorticoids --- 3D growth --- nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) --- epithelial–mesenchymal transition --- anoikis --- proliferation --- targeted cancer therapy --- disulfiram --- NPL4 --- replication stress --- DNA damage --- BRCA1 --- BRCA2 --- ATR pathway --- PDAC --- TCIRG1 --- ATP6V0a3 --- invasion --- migration --- matrix degradation --- pH-regulation --- autophagy --- multidrug resistance in cancer --- drug efflux pumps --- ATP-binding cassette transporter --- breast cancer resistance protein (BCRP) --- ABCG2 --- pyrazolo-pyrimidine derivative --- SCO-201 --- colorectal cancer --- immunotherapy --- inflammation --- microsatellite instability --- oncofetal chondroitin sulfate --- chondroitin sulfate --- cancer --- solid tumors --- target --- pediatric cancer --- VAR2 --- dexamethasone --- thyroid cancer --- microgravity --- space environment --- n/a --- epithelial-mesenchymal transition


Book
Killing Cancer : Discovery and Selection of New Target Molecules
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Despite the efficiency of current cancer treatments, cancer is still a deadly disease for too many. In 2008, 7.6 million people died of cancer; with the current development, it is estimated that the annual cancer death number will grow to 13 million by 2030. There is clearly a need for not only more research but also more innovative and out of the mainstream scientific ideas to discover and develop even better cancer treatments. This book presents the collective works published in the recent Special Issue entitled “Killing Cancer: Discovery and Selection of New Target Molecules”. These articles comprise a selection of studies, ideas, and opinions that aim to facilitate knowledge, thoughts, and discussion about which biological and molecular mechanisms in cancer we should target and how we should target them.

Keywords

Research & information: general --- Biology, life sciences --- ferlin --- myoferlin --- dysferlin --- otoferlin --- C2 domain --- plasma membrane --- sulconazole --- NF-κB --- IL-8 --- mammosphere --- breast cancer stem cells --- AF1Q --- MLLT11 --- WNT --- STAT --- esophageal cancer --- prognosis --- mTORC1 --- mTORC2 --- metabolism --- rapalogs --- mTOR inhibitors --- cancer metabolism --- mTOR in immunotherapy --- nutrient metabolism --- kinase inhibitors --- mTOR signaling --- MAPK kinase --- ERK1 --- ERK2 --- CD domain --- Rolled --- SCH772984 --- VRT-11E --- sevenmaker --- cancer therapy --- EMT --- lysosome --- lysosome-mediated invasion --- MZF1 --- phosphorylation --- PAK4 --- SUMOylation --- transcription factor --- zinc finger --- glucocorticoids --- 3D growth --- nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) --- epithelial-mesenchymal transition --- anoikis --- proliferation --- targeted cancer therapy --- disulfiram --- NPL4 --- replication stress --- DNA damage --- BRCA1 --- BRCA2 --- ATR pathway --- PDAC --- TCIRG1 --- ATP6V0a3 --- invasion --- migration --- matrix degradation --- pH-regulation --- autophagy --- multidrug resistance in cancer --- drug efflux pumps --- ATP-binding cassette transporter --- breast cancer resistance protein (BCRP) --- ABCG2 --- pyrazolo-pyrimidine derivative --- SCO-201 --- colorectal cancer --- immunotherapy --- inflammation --- microsatellite instability --- oncofetal chondroitin sulfate --- chondroitin sulfate --- cancer --- solid tumors --- target --- pediatric cancer --- VAR2 --- dexamethasone --- thyroid cancer --- microgravity --- space environment

Listing 1 - 6 of 6
Sort by