Listing 1 - 6 of 6 |
Sort by
|
Choose an application
The first nonlinear optical effect was observed in the 19th century by John Kerr. Nonlinear optics, however, started to grow up only after the invention of the laser, when intense light sources became easily available. The seminal studies by Peter Franken and Nicolaas Bloembergen, in the 1960s, paved the way for the development of today’s nonlinear photonics, the field of research that encompasses all the studies, designs, and implementations of nonlinear optical devices that can be used for the generation, communication, and processing of information. This field has attracted significant attention, partly due to the great potential of exploiting the optical nonlinearities of new or advanced materials to induce new phenomena and achieve new functions. According to Clarivate Web of Science, almost 200,000 papers were published that refer to the topic “nonlinear optic*”. Over 36,000 papers were published in the last four years (2015–2018) with the same keyword, and over 17,000 used the keyword “nonlinear photonic*”. The present Special Issue of Micromachines aims at reviewing the current state of the art and presenting perspectives of further development. Fundamental and applicative aspects are considered, with special attention paid to hot topics that may lead to technological and scientific breakthroughs.
Technology: general issues --- GeSn --- quantum dot --- electric field --- intersubband nonlinear optics --- absorption coefficients --- refractive index changes --- pure state --- cascaded spontaneous parametric down-conversion (SPDC) --- numerical simulation --- transparent conductive oxide --- coherent perfect absorption --- epsilon-near-zero media --- light-with-light modulation --- refractive index change --- non-linear photonics --- optical fibers --- thermal poling --- numerical analysis --- extrinsic chirality --- second harmonic generation --- GaAs nanowires --- plasmonic coating --- second-harmonic generation --- waveguide --- AlGaAs --- optical frequency combs --- quadratic nonlinearity --- optical parametric oscillator --- modulation instability --- stimulated raman scattering --- fiber optics --- amplifiers --- lasers --- optical communication systems --- kerr nonlinearity --- whispering gallery mode --- optical resonators --- stimulated brillouin scattering --- optomechanical oscillations --- nonlinear optics --- stimulated Raman scattering --- microphotonics --- nanophotonics --- nonlinear waveguide --- optical microcavity --- photonics crystals --- nanocrystals --- optical resonances --- harmonic generation --- four-wave mixing --- optical switching --- sub-wavelength gratings --- Mie scattering --- Fano resonances --- guided-mode resonance --- terahertz --- nonlinear optical conversion --- complex optical systems --- adaptive imaging --- single-pixel imaging --- surface nonlinear photonics --- n/a
Choose an application
The first nonlinear optical effect was observed in the 19th century by John Kerr. Nonlinear optics, however, started to grow up only after the invention of the laser, when intense light sources became easily available. The seminal studies by Peter Franken and Nicolaas Bloembergen, in the 1960s, paved the way for the development of today’s nonlinear photonics, the field of research that encompasses all the studies, designs, and implementations of nonlinear optical devices that can be used for the generation, communication, and processing of information. This field has attracted significant attention, partly due to the great potential of exploiting the optical nonlinearities of new or advanced materials to induce new phenomena and achieve new functions. According to Clarivate Web of Science, almost 200,000 papers were published that refer to the topic “nonlinear optic*”. Over 36,000 papers were published in the last four years (2015–2018) with the same keyword, and over 17,000 used the keyword “nonlinear photonic*”. The present Special Issue of Micromachines aims at reviewing the current state of the art and presenting perspectives of further development. Fundamental and applicative aspects are considered, with special attention paid to hot topics that may lead to technological and scientific breakthroughs.
GeSn --- quantum dot --- electric field --- intersubband nonlinear optics --- absorption coefficients --- refractive index changes --- pure state --- cascaded spontaneous parametric down-conversion (SPDC) --- numerical simulation --- transparent conductive oxide --- coherent perfect absorption --- epsilon-near-zero media --- light-with-light modulation --- refractive index change --- non-linear photonics --- optical fibers --- thermal poling --- numerical analysis --- extrinsic chirality --- second harmonic generation --- GaAs nanowires --- plasmonic coating --- second-harmonic generation --- waveguide --- AlGaAs --- optical frequency combs --- quadratic nonlinearity --- optical parametric oscillator --- modulation instability --- stimulated raman scattering --- fiber optics --- amplifiers --- lasers --- optical communication systems --- kerr nonlinearity --- whispering gallery mode --- optical resonators --- stimulated brillouin scattering --- optomechanical oscillations --- nonlinear optics --- stimulated Raman scattering --- microphotonics --- nanophotonics --- nonlinear waveguide --- optical microcavity --- photonics crystals --- nanocrystals --- optical resonances --- harmonic generation --- four-wave mixing --- optical switching --- sub-wavelength gratings --- Mie scattering --- Fano resonances --- guided-mode resonance --- terahertz --- nonlinear optical conversion --- complex optical systems --- adaptive imaging --- single-pixel imaging --- surface nonlinear photonics --- n/a
Choose an application
The first nonlinear optical effect was observed in the 19th century by John Kerr. Nonlinear optics, however, started to grow up only after the invention of the laser, when intense light sources became easily available. The seminal studies by Peter Franken and Nicolaas Bloembergen, in the 1960s, paved the way for the development of today’s nonlinear photonics, the field of research that encompasses all the studies, designs, and implementations of nonlinear optical devices that can be used for the generation, communication, and processing of information. This field has attracted significant attention, partly due to the great potential of exploiting the optical nonlinearities of new or advanced materials to induce new phenomena and achieve new functions. According to Clarivate Web of Science, almost 200,000 papers were published that refer to the topic “nonlinear optic*”. Over 36,000 papers were published in the last four years (2015–2018) with the same keyword, and over 17,000 used the keyword “nonlinear photonic*”. The present Special Issue of Micromachines aims at reviewing the current state of the art and presenting perspectives of further development. Fundamental and applicative aspects are considered, with special attention paid to hot topics that may lead to technological and scientific breakthroughs.
Technology: general issues --- GeSn --- quantum dot --- electric field --- intersubband nonlinear optics --- absorption coefficients --- refractive index changes --- pure state --- cascaded spontaneous parametric down-conversion (SPDC) --- numerical simulation --- transparent conductive oxide --- coherent perfect absorption --- epsilon-near-zero media --- light-with-light modulation --- refractive index change --- non-linear photonics --- optical fibers --- thermal poling --- numerical analysis --- extrinsic chirality --- second harmonic generation --- GaAs nanowires --- plasmonic coating --- second-harmonic generation --- waveguide --- AlGaAs --- optical frequency combs --- quadratic nonlinearity --- optical parametric oscillator --- modulation instability --- stimulated raman scattering --- fiber optics --- amplifiers --- lasers --- optical communication systems --- kerr nonlinearity --- whispering gallery mode --- optical resonators --- stimulated brillouin scattering --- optomechanical oscillations --- nonlinear optics --- stimulated Raman scattering --- microphotonics --- nanophotonics --- nonlinear waveguide --- optical microcavity --- photonics crystals --- nanocrystals --- optical resonances --- harmonic generation --- four-wave mixing --- optical switching --- sub-wavelength gratings --- Mie scattering --- Fano resonances --- guided-mode resonance --- terahertz --- nonlinear optical conversion --- complex optical systems --- adaptive imaging --- single-pixel imaging --- surface nonlinear photonics
Choose an application
Sonic/phononic crystals termed acoustic/sonic band gap media are elastic analogues of photonic crystals and have also recently received renewed attention in many acoustic applications. Photonic crystals have a periodic dielectric modulation with a spatial scale on the order of the optical wavelength. The design and optimization of photonic crystals can be utilized in many applications by combining factors related to the combinations of intermixing materials, lattice symmetry, lattice constant, filling factor, shape of the scattering object, and thickness of a structural layer. Through the publications and discussions of the research on sonic/phononic crystals, researchers can obtain effective and valuable results and improve their future development in related fields. Devices based on these crystals can be utilized in mechanical and physical applications and can also be designed for novel applications as based on the investigations in this Special Issue.
History of engineering & technology --- optical force --- photonic crystal cavity --- particle trapping --- optomechanical sensing --- polarization converter --- photonic crystal fiber --- square lattice --- extinction ratio --- polarization splitter --- dual-core photonic crystal fiber --- coupling characteristics --- phononic crystal --- auxetic structure --- star-shaped honeycomb structure --- wave propagation --- orbital angular momentum --- modal dispersion --- stress-induced birefringence --- finite element method --- mode-division multiplexing --- Erbium-doped fiber amplifier --- photonic crystal fibers --- cylindrical lens --- photonic nanojet --- graded-index --- vibration energy harvester --- defect bands --- piezoelectric material --- magnetostrictive material --- output voltage and power --- locally resonant --- band gap --- differential quadrature method --- direct laser writing --- KTP --- nonlinear optics --- photonic coupling --- energy harvesting --- defect modes --- phononic crystals (PCs) --- colloidal photonic crystals --- tunable photonic band gaps --- anti-counterfeiting --- coupled elastic waves --- laminated piezoelectric phononic crystals --- arbitrarily anisotropic materials --- band tunability --- electrical boundaries --- dispersion curves --- photonic crystals --- photonic bandgaps --- polymer materials --- acoustic metamaterial --- effective medium --- bubble resonance --- negative modulus --- graphene --- kerr effect --- optical switch --- photonic band gap --- photonic crystal --- microwave photonics --- optical frequency combs --- waveguide --- complete PBG --- PDOS --- TE --- TM --- beam shaping --- angular filtering --- autocloning --- multilayered structures --- sensor --- sensitivity --- figure of merit --- n/a
Choose an application
Sonic/phononic crystals termed acoustic/sonic band gap media are elastic analogues of photonic crystals and have also recently received renewed attention in many acoustic applications. Photonic crystals have a periodic dielectric modulation with a spatial scale on the order of the optical wavelength. The design and optimization of photonic crystals can be utilized in many applications by combining factors related to the combinations of intermixing materials, lattice symmetry, lattice constant, filling factor, shape of the scattering object, and thickness of a structural layer. Through the publications and discussions of the research on sonic/phononic crystals, researchers can obtain effective and valuable results and improve their future development in related fields. Devices based on these crystals can be utilized in mechanical and physical applications and can also be designed for novel applications as based on the investigations in this Special Issue.
optical force --- photonic crystal cavity --- particle trapping --- optomechanical sensing --- polarization converter --- photonic crystal fiber --- square lattice --- extinction ratio --- polarization splitter --- dual-core photonic crystal fiber --- coupling characteristics --- phononic crystal --- auxetic structure --- star-shaped honeycomb structure --- wave propagation --- orbital angular momentum --- modal dispersion --- stress-induced birefringence --- finite element method --- mode-division multiplexing --- Erbium-doped fiber amplifier --- photonic crystal fibers --- cylindrical lens --- photonic nanojet --- graded-index --- vibration energy harvester --- defect bands --- piezoelectric material --- magnetostrictive material --- output voltage and power --- locally resonant --- band gap --- differential quadrature method --- direct laser writing --- KTP --- nonlinear optics --- photonic coupling --- energy harvesting --- defect modes --- phononic crystals (PCs) --- colloidal photonic crystals --- tunable photonic band gaps --- anti-counterfeiting --- coupled elastic waves --- laminated piezoelectric phononic crystals --- arbitrarily anisotropic materials --- band tunability --- electrical boundaries --- dispersion curves --- photonic crystals --- photonic bandgaps --- polymer materials --- acoustic metamaterial --- effective medium --- bubble resonance --- negative modulus --- graphene --- kerr effect --- optical switch --- photonic band gap --- photonic crystal --- microwave photonics --- optical frequency combs --- waveguide --- complete PBG --- PDOS --- TE --- TM --- beam shaping --- angular filtering --- autocloning --- multilayered structures --- sensor --- sensitivity --- figure of merit --- n/a
Choose an application
Sonic/phononic crystals termed acoustic/sonic band gap media are elastic analogues of photonic crystals and have also recently received renewed attention in many acoustic applications. Photonic crystals have a periodic dielectric modulation with a spatial scale on the order of the optical wavelength. The design and optimization of photonic crystals can be utilized in many applications by combining factors related to the combinations of intermixing materials, lattice symmetry, lattice constant, filling factor, shape of the scattering object, and thickness of a structural layer. Through the publications and discussions of the research on sonic/phononic crystals, researchers can obtain effective and valuable results and improve their future development in related fields. Devices based on these crystals can be utilized in mechanical and physical applications and can also be designed for novel applications as based on the investigations in this Special Issue.
History of engineering & technology --- optical force --- photonic crystal cavity --- particle trapping --- optomechanical sensing --- polarization converter --- photonic crystal fiber --- square lattice --- extinction ratio --- polarization splitter --- dual-core photonic crystal fiber --- coupling characteristics --- phononic crystal --- auxetic structure --- star-shaped honeycomb structure --- wave propagation --- orbital angular momentum --- modal dispersion --- stress-induced birefringence --- finite element method --- mode-division multiplexing --- Erbium-doped fiber amplifier --- photonic crystal fibers --- cylindrical lens --- photonic nanojet --- graded-index --- vibration energy harvester --- defect bands --- piezoelectric material --- magnetostrictive material --- output voltage and power --- locally resonant --- band gap --- differential quadrature method --- direct laser writing --- KTP --- nonlinear optics --- photonic coupling --- energy harvesting --- defect modes --- phononic crystals (PCs) --- colloidal photonic crystals --- tunable photonic band gaps --- anti-counterfeiting --- coupled elastic waves --- laminated piezoelectric phononic crystals --- arbitrarily anisotropic materials --- band tunability --- electrical boundaries --- dispersion curves --- photonic crystals --- photonic bandgaps --- polymer materials --- acoustic metamaterial --- effective medium --- bubble resonance --- negative modulus --- graphene --- kerr effect --- optical switch --- photonic band gap --- photonic crystal --- microwave photonics --- optical frequency combs --- waveguide --- complete PBG --- PDOS --- TE --- TM --- beam shaping --- angular filtering --- autocloning --- multilayered structures --- sensor --- sensitivity --- figure of merit
Listing 1 - 6 of 6 |
Sort by
|