Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

UGent (2)

ULB (2)

ULiège (2)

More...

Resource type

book (2)


Language

English (2)


Year
From To Submit

2020 (1)

2019 (1)

Listing 1 - 2 of 2
Sort by

Book
Process Modelling and Simulation
Authors: --- ---
ISBN: 303921456X 3039214551 9783039214563 Year: 2019 Publisher: Basel, Switzerland : MDPI,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since process models are nowadays ubiquitous in many applications, the challenges and alternatives related to their development, validation, and efficient use have become more apparent. In addition, the massive amounts of both offline and online data available today open the door for new applications and solutions. However, transforming data into useful models and information in the context of the process industry or of bio-systems requires specific approaches and considerations such as new modelling methodologies incorporating the complex, stochastic, hybrid and distributed nature of many processes in particular. The same can be said about the tools and software environments used to describe, code, and solve such models for their further exploitation. Going well beyond mere simulation tools, these advanced tools offer a software suite built around the models, facilitating tasks such as experiment design, parameter estimation, model initialization, validation, analysis, size reduction, discretization, optimization, distributed computation, co-simulation, etc. This Special Issue collects novel developments in these topics in order to address the challenges brought by the use of models in their different facets, and to reflect state of the art developments in methods, tools and industrial applications.

Keywords

polyacrylonitrile-based carbon fiber --- n/a --- coagulation bath --- binder dissolution --- sensitivity analysis --- simulation --- neural networks --- kernel development --- thermodynamics --- phytochemicals --- wave resonance --- natural extracts --- population balance model --- optimization --- vane --- parameter estimation --- grey-box model --- observability --- optimal clustering --- energy --- idling test --- data-mining --- extents --- computational fluid dynamics --- scrap dissolution --- Combined Heat and Power --- dynamic optimization --- scrap melting --- swelling --- engineering --- dry-jet wet spinning process --- fluid bed granulation --- point estimation method --- algebraic modeling language --- Design of Experiments --- costing stopping --- materials --- hydration --- SOS programming --- kinetics --- moisture content --- CHP legislation --- model predictive control --- graph theory --- robust optimization --- dynamic converter modelling --- partial least square regression --- uncertainty --- state decoupling --- utility management --- fluidized bed drying --- reactor coolant pump --- condensation --- wheat germ --- cooking --- maximum wave amplitude --- moving horizon estimation --- gray-box model --- chemistry --- barley --- machine learning --- heat and mass balance --- equality constraints --- porridge --- process model validation --- Pharmaceutical Processes --- mathematical model --- model identification --- Mammalian Cell Culture --- process modeling --- parameter correlation


Book
Self-Organizing Nanovectors for Drug Delivery
Authors: ---
ISBN: 3039284290 3039284282 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nanomedicine represents one of the most investigated areas in the last two decades in the field of pharmaceutics. Several nanovectors have been developed and a growing number of products have been approved. It is well known that many biomaterials are able to self-organize under controlled conditions giving rise nanostructures. Polymers, lipids, inorganic materials, peptides and proteins, and surfactants are examples of such biomaterials and the self-assembling property can be exploited to design nanovectors that are useful for drug delivery. The self-organization of nanostructures is an attractive approach to preparing nanovectors, avoiding complex and high-energy-consuming preparation methods, and, in some cases, facilitating drug loading procedures. Moreover, preparations based on these biocompatible and pharmaceutical grade biomaterials allow an easy transfer from the lab to the industrial scale. This book reports ten different works, and a review, aiming to cover multiple strategies and pharmaceutical applications in the field of self-organizing nanovectors for drug delivery.

Listing 1 - 2 of 2
Sort by