Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Micro electrical discharge machining (micro-EDM) is a thermo-electric and contactless process most suited for micro-manufacturing and high-precision machining, especially when difficult-to-cut materials, such as super alloys, composites, and electro conductive ceramics, are processed. Many industrial domains exploit this technology to fabricate highly demanding components, such as high-aspect-ratio micro holes for fuel injectors, high-precision molds, and biomedical parts.Moreover, the continuous trend towards miniaturization and high precision functional components boosted the development of control strategies and optimization methodologies specifically suited to address the challenges in micro- and nano-scale fabrication.This Special Issue showcases 12 research papers and a review article focusing on novel methodological developments on several aspects of micro electrical discharge machining: machinability studies of hard materials (TiNi shape memory alloys, Si3N4–TiN ceramic composite, ZrB2-based ceramics reinforced with SiC fibers and whiskers, tungsten-cemented carbide, Ti-6Al-4V alloy, duplex stainless steel, and cubic boron nitride), process optimization adopting different dielectrics or electrodes, characterization of mechanical performance of processed surface, process analysis, and optimization via discharge pulse-type discrimination, hybrid processes, fabrication of molds for inflatable soft microactuators, and implementation of low-cost desktop micro-EDM system.
Technology: general issues --- electrodischarge micromachining --- drilling --- cubic boron nitride --- foil queue microelectrode --- micro-EDM --- step effect --- tapered structure --- wire electrical discharge grinding (WEDG) --- micromoulding --- soft microrobotics --- electrical discharge machining (EDM) --- Tungsten cemented carbide (WC-Co) --- desktop micro-electrical discharge machining (micro-EDM) system --- cut-side micro-tool --- micro-holes --- EDM --- SR --- TWR --- PMEDM --- MRR --- electro-discharge treatment --- Ti-6Al-4V --- MWCNTs --- surface characterization --- wear resistance --- corrosion resistance --- composite 3D microelectrode --- diffusion bonding --- step --- 3D microstructure --- material processing --- DSS-2205 alloy --- electric-discharge machining --- surface integrity --- surface wettability --- ceramic composite --- micro-EDM milling --- pulse discrimination --- Micro-electro-discharge machining (μEDM) --- liquid-metal electrode --- Galinstan --- Zirconium Boride --- silicon carbide fibers --- silicon carbide whiskers --- advanced material --- TiNi shape memory alloy --- TiC powder --- surface modification --- microhardness --- electrochemical discharge machining --- laser machining --- glass --- micro-groove --- n/a
Choose an application
Micro- and nanomanufacturing technologies have been researched and developed in the industrial environment with the goal of supporting product miniaturization and the integration of new functionalities. The technological development of new materials and processing methods needs to be supported by predictive models which can simulate the interactions between materials, process states, and product properties. In comparison with the conventional manufacturing scale, micro- and nanoscale technologies require the study of different mechanical, thermal, and fluid dynamics, phenomena which need to be assessed and modeled.This Special Issue is dedicated to advances in the modeling of micro- and nanomanufacturing processes. The development of new models, validation of state-of-the-art modeling strategies, and approaches to material model calibration are presented. The goal is to provide state-of-the-art examples of the use of modeling and simulation in micro- and nanomanufacturing processes, promoting the diffusion and development of these technologies.
Technology: general issues --- History of engineering & technology --- modular microfluidic system --- 3D printing --- gel microspheres --- laser-induced periodical surface structures --- micro-injection molding --- replication --- surface wettability --- micro-groove --- electrochemical machining --- porous cathode --- conductive mask --- machining localization --- dimensional uniformity --- nanogrinding --- abrasive grains --- rake angle --- spacing --- grinding forces --- grinding temperature --- chip formation --- subsurface damage --- micro injection molding --- additive manufacturing --- stereolithography --- K9 glass --- mathematical model --- grinding force --- brittle fracture --- ductile–brittle transition --- active grains number --- lithography simulation --- microelectromechanical system --- waveguide method --- microstructure --- radial ultrasonic rolling electrochemical micromachining (RUR-EMM) --- material removal amount --- surface roughness --- response surface methodology (RSM) --- turning --- minimum chip thickness --- micromachining --- femtosecond micromachining --- burst processing --- intraocular lens --- hydrophilic acrylic --- polishing --- laser assisted turning --- tungsten carbide --- diamond turning --- finite element analysis --- prostheses --- ITAP --- micro topology --- ANSYS --- MATLAB --- additive manufacture --- n/a --- ductile-brittle transition
Choose an application
Micro electrical discharge machining (micro-EDM) is a thermo-electric and contactless process most suited for micro-manufacturing and high-precision machining, especially when difficult-to-cut materials, such as super alloys, composites, and electro conductive ceramics, are processed. Many industrial domains exploit this technology to fabricate highly demanding components, such as high-aspect-ratio micro holes for fuel injectors, high-precision molds, and biomedical parts.Moreover, the continuous trend towards miniaturization and high precision functional components boosted the development of control strategies and optimization methodologies specifically suited to address the challenges in micro- and nano-scale fabrication.This Special Issue showcases 12 research papers and a review article focusing on novel methodological developments on several aspects of micro electrical discharge machining: machinability studies of hard materials (TiNi shape memory alloys, Si3N4–TiN ceramic composite, ZrB2-based ceramics reinforced with SiC fibers and whiskers, tungsten-cemented carbide, Ti-6Al-4V alloy, duplex stainless steel, and cubic boron nitride), process optimization adopting different dielectrics or electrodes, characterization of mechanical performance of processed surface, process analysis, and optimization via discharge pulse-type discrimination, hybrid processes, fabrication of molds for inflatable soft microactuators, and implementation of low-cost desktop micro-EDM system.
electrodischarge micromachining --- drilling --- cubic boron nitride --- foil queue microelectrode --- micro-EDM --- step effect --- tapered structure --- wire electrical discharge grinding (WEDG) --- micromoulding --- soft microrobotics --- electrical discharge machining (EDM) --- Tungsten cemented carbide (WC-Co) --- desktop micro-electrical discharge machining (micro-EDM) system --- cut-side micro-tool --- micro-holes --- EDM --- SR --- TWR --- PMEDM --- MRR --- electro-discharge treatment --- Ti-6Al-4V --- MWCNTs --- surface characterization --- wear resistance --- corrosion resistance --- composite 3D microelectrode --- diffusion bonding --- step --- 3D microstructure --- material processing --- DSS-2205 alloy --- electric-discharge machining --- surface integrity --- surface wettability --- ceramic composite --- micro-EDM milling --- pulse discrimination --- Micro-electro-discharge machining (μEDM) --- liquid-metal electrode --- Galinstan --- Zirconium Boride --- silicon carbide fibers --- silicon carbide whiskers --- advanced material --- TiNi shape memory alloy --- TiC powder --- surface modification --- microhardness --- electrochemical discharge machining --- laser machining --- glass --- micro-groove --- n/a
Choose an application
Micro- and nanomanufacturing technologies have been researched and developed in the industrial environment with the goal of supporting product miniaturization and the integration of new functionalities. The technological development of new materials and processing methods needs to be supported by predictive models which can simulate the interactions between materials, process states, and product properties. In comparison with the conventional manufacturing scale, micro- and nanoscale technologies require the study of different mechanical, thermal, and fluid dynamics, phenomena which need to be assessed and modeled.This Special Issue is dedicated to advances in the modeling of micro- and nanomanufacturing processes. The development of new models, validation of state-of-the-art modeling strategies, and approaches to material model calibration are presented. The goal is to provide state-of-the-art examples of the use of modeling and simulation in micro- and nanomanufacturing processes, promoting the diffusion and development of these technologies.
modular microfluidic system --- 3D printing --- gel microspheres --- laser-induced periodical surface structures --- micro-injection molding --- replication --- surface wettability --- micro-groove --- electrochemical machining --- porous cathode --- conductive mask --- machining localization --- dimensional uniformity --- nanogrinding --- abrasive grains --- rake angle --- spacing --- grinding forces --- grinding temperature --- chip formation --- subsurface damage --- micro injection molding --- additive manufacturing --- stereolithography --- K9 glass --- mathematical model --- grinding force --- brittle fracture --- ductile–brittle transition --- active grains number --- lithography simulation --- microelectromechanical system --- waveguide method --- microstructure --- radial ultrasonic rolling electrochemical micromachining (RUR-EMM) --- material removal amount --- surface roughness --- response surface methodology (RSM) --- turning --- minimum chip thickness --- micromachining --- femtosecond micromachining --- burst processing --- intraocular lens --- hydrophilic acrylic --- polishing --- laser assisted turning --- tungsten carbide --- diamond turning --- finite element analysis --- prostheses --- ITAP --- micro topology --- ANSYS --- MATLAB --- additive manufacture --- n/a --- ductile-brittle transition
Choose an application
Micro electrical discharge machining (micro-EDM) is a thermo-electric and contactless process most suited for micro-manufacturing and high-precision machining, especially when difficult-to-cut materials, such as super alloys, composites, and electro conductive ceramics, are processed. Many industrial domains exploit this technology to fabricate highly demanding components, such as high-aspect-ratio micro holes for fuel injectors, high-precision molds, and biomedical parts.Moreover, the continuous trend towards miniaturization and high precision functional components boosted the development of control strategies and optimization methodologies specifically suited to address the challenges in micro- and nano-scale fabrication.This Special Issue showcases 12 research papers and a review article focusing on novel methodological developments on several aspects of micro electrical discharge machining: machinability studies of hard materials (TiNi shape memory alloys, Si3N4–TiN ceramic composite, ZrB2-based ceramics reinforced with SiC fibers and whiskers, tungsten-cemented carbide, Ti-6Al-4V alloy, duplex stainless steel, and cubic boron nitride), process optimization adopting different dielectrics or electrodes, characterization of mechanical performance of processed surface, process analysis, and optimization via discharge pulse-type discrimination, hybrid processes, fabrication of molds for inflatable soft microactuators, and implementation of low-cost desktop micro-EDM system.
Technology: general issues --- electrodischarge micromachining --- drilling --- cubic boron nitride --- foil queue microelectrode --- micro-EDM --- step effect --- tapered structure --- wire electrical discharge grinding (WEDG) --- micromoulding --- soft microrobotics --- electrical discharge machining (EDM) --- Tungsten cemented carbide (WC-Co) --- desktop micro-electrical discharge machining (micro-EDM) system --- cut-side micro-tool --- micro-holes --- EDM --- SR --- TWR --- PMEDM --- MRR --- electro-discharge treatment --- Ti-6Al-4V --- MWCNTs --- surface characterization --- wear resistance --- corrosion resistance --- composite 3D microelectrode --- diffusion bonding --- step --- 3D microstructure --- material processing --- DSS-2205 alloy --- electric-discharge machining --- surface integrity --- surface wettability --- ceramic composite --- micro-EDM milling --- pulse discrimination --- Micro-electro-discharge machining (μEDM) --- liquid-metal electrode --- Galinstan --- Zirconium Boride --- silicon carbide fibers --- silicon carbide whiskers --- advanced material --- TiNi shape memory alloy --- TiC powder --- surface modification --- microhardness --- electrochemical discharge machining --- laser machining --- glass --- micro-groove
Choose an application
Micro- and nanomanufacturing technologies have been researched and developed in the industrial environment with the goal of supporting product miniaturization and the integration of new functionalities. The technological development of new materials and processing methods needs to be supported by predictive models which can simulate the interactions between materials, process states, and product properties. In comparison with the conventional manufacturing scale, micro- and nanoscale technologies require the study of different mechanical, thermal, and fluid dynamics, phenomena which need to be assessed and modeled.This Special Issue is dedicated to advances in the modeling of micro- and nanomanufacturing processes. The development of new models, validation of state-of-the-art modeling strategies, and approaches to material model calibration are presented. The goal is to provide state-of-the-art examples of the use of modeling and simulation in micro- and nanomanufacturing processes, promoting the diffusion and development of these technologies.
Technology: general issues --- History of engineering & technology --- modular microfluidic system --- 3D printing --- gel microspheres --- laser-induced periodical surface structures --- micro-injection molding --- replication --- surface wettability --- micro-groove --- electrochemical machining --- porous cathode --- conductive mask --- machining localization --- dimensional uniformity --- nanogrinding --- abrasive grains --- rake angle --- spacing --- grinding forces --- grinding temperature --- chip formation --- subsurface damage --- micro injection molding --- additive manufacturing --- stereolithography --- K9 glass --- mathematical model --- grinding force --- brittle fracture --- ductile-brittle transition --- active grains number --- lithography simulation --- microelectromechanical system --- waveguide method --- microstructure --- radial ultrasonic rolling electrochemical micromachining (RUR-EMM) --- material removal amount --- surface roughness --- response surface methodology (RSM) --- turning --- minimum chip thickness --- micromachining --- femtosecond micromachining --- burst processing --- intraocular lens --- hydrophilic acrylic --- polishing --- laser assisted turning --- tungsten carbide --- diamond turning --- finite element analysis --- prostheses --- ITAP --- micro topology --- ANSYS --- MATLAB --- additive manufacture
Listing 1 - 6 of 6 |
Sort by
|