Listing 1 - 10 of 10 |
Sort by
|
Choose an application
The majority of microbes in many environments are considered “as yet uncultured” and were traditionally considered inaccessible for study through the microbiological gold standard of pure culture. The emergence of metagenomic approaches has allowed researchers to access and study these microbes in a culture-independent manner through DNA sequencing and functional expression of metagenomic DNA in a heterologous host. Metagenomics has revealed an extraordinary degree of diversity and novelty, not only among microbial communities themselves, but also within the genomes of these microbes. This Research Topic aims to showcase the utility of metagenomics to gain insights on the microbial and genomic diversity in different environments by revealing the breadth of novelty that was in the past, largely untapped.
Human microbiome --- Metagenomics --- metatranscriptomics --- DNA SEQUENCING --- functional metagenomics --- viral metagenomics
Choose an application
The majority of microbes in many environments are considered “as yet uncultured” and were traditionally considered inaccessible for study through the microbiological gold standard of pure culture. The emergence of metagenomic approaches has allowed researchers to access and study these microbes in a culture-independent manner through DNA sequencing and functional expression of metagenomic DNA in a heterologous host. Metagenomics has revealed an extraordinary degree of diversity and novelty, not only among microbial communities themselves, but also within the genomes of these microbes. This Research Topic aims to showcase the utility of metagenomics to gain insights on the microbial and genomic diversity in different environments by revealing the breadth of novelty that was in the past, largely untapped.
Human microbiome --- Metagenomics --- metatranscriptomics --- DNA SEQUENCING --- functional metagenomics --- viral metagenomics
Choose an application
The majority of microbes in many environments are considered “as yet uncultured” and were traditionally considered inaccessible for study through the microbiological gold standard of pure culture. The emergence of metagenomic approaches has allowed researchers to access and study these microbes in a culture-independent manner through DNA sequencing and functional expression of metagenomic DNA in a heterologous host. Metagenomics has revealed an extraordinary degree of diversity and novelty, not only among microbial communities themselves, but also within the genomes of these microbes. This Research Topic aims to showcase the utility of metagenomics to gain insights on the microbial and genomic diversity in different environments by revealing the breadth of novelty that was in the past, largely untapped.
Human microbiome --- Metagenomics --- metatranscriptomics --- DNA SEQUENCING --- functional metagenomics --- viral metagenomics
Choose an application
The oral cavity harbors an immense diversity of microorganisms, including bacteria, fungi, archaea, protozoa and viruses. At health, oral microbial community is thought to be in a state of homeostasis, even after numerous perturbations (e.g., toothbrushing, food intake) a day. The breach in this homeostasis can occur for instance if the perturbations become too excessive (e.g., frequent carbohydrate intake leading to acidification of the community) or the host is compromised (e.g., inadequate immune response resulting in persistent inflammation of periodontal tissue). Aggressive antimicrobial therapy (e.g., antibiotics in case of periodontal disease or preventive antibiotic therapy before and after dental extractions) is commonly applied with all the negative consequences of this approach. So far little is known on the interplay between the environmental, host and microbial factors in maintaining an ecological balance. What are the prerequisites for a healthy oral ecosystem? Can we restore an unbalanced oral microbiome? How stable is the oral microbiome through time and how robust it is to external perturbations? Gaining new insights in the ecological factors sustaining oral health will lead to conceptually new therapies and preventive programs.
Quorum sensing (Microbiology) --- Communicable diseases. --- Microbiology & Immunology --- Biology --- Health & Biological Sciences --- Oral ecology --- Quorum Sensing --- Immune System --- metatranscriptomics --- Biofilm --- horizontal gene transfer --- Fungal bacterial interactions --- Dental Plaque
Choose an application
The oral cavity harbors an immense diversity of microorganisms, including bacteria, fungi, archaea, protozoa and viruses. At health, oral microbial community is thought to be in a state of homeostasis, even after numerous perturbations (e.g., toothbrushing, food intake) a day. The breach in this homeostasis can occur for instance if the perturbations become too excessive (e.g., frequent carbohydrate intake leading to acidification of the community) or the host is compromised (e.g., inadequate immune response resulting in persistent inflammation of periodontal tissue). Aggressive antimicrobial therapy (e.g., antibiotics in case of periodontal disease or preventive antibiotic therapy before and after dental extractions) is commonly applied with all the negative consequences of this approach. So far little is known on the interplay between the environmental, host and microbial factors in maintaining an ecological balance. What are the prerequisites for a healthy oral ecosystem? Can we restore an unbalanced oral microbiome? How stable is the oral microbiome through time and how robust it is to external perturbations? Gaining new insights in the ecological factors sustaining oral health will lead to conceptually new therapies and preventive programs.
Quorum sensing (Microbiology) --- Communicable diseases. --- Oral ecology --- Quorum Sensing --- Immune System --- metatranscriptomics --- Biofilm --- horizontal gene transfer --- Fungal bacterial interactions --- Dental Plaque
Choose an application
The oral cavity harbors an immense diversity of microorganisms, including bacteria, fungi, archaea, protozoa and viruses. At health, oral microbial community is thought to be in a state of homeostasis, even after numerous perturbations (e.g., toothbrushing, food intake) a day. The breach in this homeostasis can occur for instance if the perturbations become too excessive (e.g., frequent carbohydrate intake leading to acidification of the community) or the host is compromised (e.g., inadequate immune response resulting in persistent inflammation of periodontal tissue). Aggressive antimicrobial therapy (e.g., antibiotics in case of periodontal disease or preventive antibiotic therapy before and after dental extractions) is commonly applied with all the negative consequences of this approach. So far little is known on the interplay between the environmental, host and microbial factors in maintaining an ecological balance. What are the prerequisites for a healthy oral ecosystem? Can we restore an unbalanced oral microbiome? How stable is the oral microbiome through time and how robust it is to external perturbations? Gaining new insights in the ecological factors sustaining oral health will lead to conceptually new therapies and preventive programs.
Quorum sensing (Microbiology) --- Communicable diseases. --- Microbiology & Immunology --- Biology --- Health & Biological Sciences --- Oral ecology --- Quorum Sensing --- Immune System --- metatranscriptomics --- Biofilm --- horizontal gene transfer --- Fungal bacterial interactions --- Dental Plaque
Choose an application
The application of genomic, transcriptomic, and proteomic analyses brings new dimensions to our understanding of the biology of phototrophic bacteria. Comparing gene sequences of photosynthetic reaction center proteins and a key enzyme of bacteriochlorophyll biosynthesis from more than 150 genomes demonstrates the ancient roots of phototrophic bacteria. The presence and phylogeny of biosynthetic pathways of the compatible solutes ectoine and glycine betaine define groups of marine and halophilic phototrophic bacteria. The wide range of ecological niches conquered during evolution is demonstrated by the adaptation of cyanobacterial genera Scytonema, Tolypothrix, and Nostoc to different temperature ranges and the adaptation of Heliorestis species to alkaline habitats. Differences between phototrophic purple bacteria from marine and freshwater habitats are reflected in the preference for sulfidic and non-sulfidic niches. Also, a high proportion of siderophore producers was found among isolates from freshwater sources opposed to those from salty habitats . The primary colonization of carbonate rocks by a group of novel endolithic cyanobacteria and the following successions were studied over 9 months. The genomic characterization of the aerobic Dinoroseobacter strain AAP5, the strictly anaerobic and syntrophic Prosthecochloris ethylica, and the strictly anaerobic Heliorestis convoluta is reported. Significant differences in relation to oxygen are reflected in oxygen production by some species, oxygen tolerance over a wide range of concentrations, and the use of oxygen for energy generation or a strictly anaerobic lifestyle. Relations to oxygen are highlighted in papers on photooxidative stress, regulation of iron–sulfur cluster formation, and interactions of redox regulators. In situ metatranscriptomic and proteomic studies demonstrate the high metabolic flexibility of Chloroflexus aggregans in a hot spring microbial mat and show its adaptation to the changing conditions over day and night periods by a well-coordinated regulation of key metabolic processes for both phototrophic and chemotrophic growth.
Research & information: general --- phylogeny --- photosynthetic reaction center proteins --- bacteriochlorophyll biosynthesis --- phototrophic purple bacteria --- evolution of anoxygenic photosynthesis --- iron-sulfur cluster --- isc genes --- suf genes --- antisense promoters --- OxyR --- IscR --- Irr --- anoxygenic phototrophic bacteria --- purple nonsulfur bacteria --- massive blooms --- pufM gene --- Rhodovulum --- phylogenomics --- bioerosion --- anoxygenic phototroph --- microbiome --- euendolith --- Rhodobacter capsulatus --- Rhodobacter sphaeroides --- photooxidative stress --- transcriptomics --- proteomics --- stress defense --- heliobacteria --- Heliorestis convoluta --- alkaliphilic bacteria --- soda lake --- bacteriochlorophyll g --- biological soil crust --- drylands --- niche partitioning --- nitrogen fixing cyanobacteria --- Alphaproteobacteria --- Rhodobacteraceae --- nitric oxide --- quorum sensing --- gene transfer agent --- motility --- Crp/Fnr --- Dnr --- RegA --- ChpT --- green sulfur bacteria --- syntrophy --- e-pili --- adhesion protein --- photosynthetic symbionts --- large multiheme cytochrome --- metagenomic binning --- genomes of photosynthetic bacteria --- glycine betaine biosynthesis --- ectoine biosynthesis --- osmotic adaptation --- phylogeny of osmolyte biosynthesis --- filamentous anoxygenic phototroph --- microbial mats --- hot springs --- metatranscriptomics --- energy metabolism --- carbon fixation --- aerobic anoxygenic phototrophic bacteria --- bacteriochlorophyll a --- photosynthesis genes --- rhodopsin --- Sphingomonadaceae --- aerobic anoxygenic phototrophs --- siderophore --- metallophore --- CAS assay --- Chromocurvus halotolerans strain EG19 --- n/a
Choose an application
The application of genomic, transcriptomic, and proteomic analyses brings new dimensions to our understanding of the biology of phototrophic bacteria. Comparing gene sequences of photosynthetic reaction center proteins and a key enzyme of bacteriochlorophyll biosynthesis from more than 150 genomes demonstrates the ancient roots of phototrophic bacteria. The presence and phylogeny of biosynthetic pathways of the compatible solutes ectoine and glycine betaine define groups of marine and halophilic phototrophic bacteria. The wide range of ecological niches conquered during evolution is demonstrated by the adaptation of cyanobacterial genera Scytonema, Tolypothrix, and Nostoc to different temperature ranges and the adaptation of Heliorestis species to alkaline habitats. Differences between phototrophic purple bacteria from marine and freshwater habitats are reflected in the preference for sulfidic and non-sulfidic niches. Also, a high proportion of siderophore producers was found among isolates from freshwater sources opposed to those from salty habitats . The primary colonization of carbonate rocks by a group of novel endolithic cyanobacteria and the following successions were studied over 9 months. The genomic characterization of the aerobic Dinoroseobacter strain AAP5, the strictly anaerobic and syntrophic Prosthecochloris ethylica, and the strictly anaerobic Heliorestis convoluta is reported. Significant differences in relation to oxygen are reflected in oxygen production by some species, oxygen tolerance over a wide range of concentrations, and the use of oxygen for energy generation or a strictly anaerobic lifestyle. Relations to oxygen are highlighted in papers on photooxidative stress, regulation of iron–sulfur cluster formation, and interactions of redox regulators. In situ metatranscriptomic and proteomic studies demonstrate the high metabolic flexibility of Chloroflexus aggregans in a hot spring microbial mat and show its adaptation to the changing conditions over day and night periods by a well-coordinated regulation of key metabolic processes for both phototrophic and chemotrophic growth.
phylogeny --- photosynthetic reaction center proteins --- bacteriochlorophyll biosynthesis --- phototrophic purple bacteria --- evolution of anoxygenic photosynthesis --- iron-sulfur cluster --- isc genes --- suf genes --- antisense promoters --- OxyR --- IscR --- Irr --- anoxygenic phototrophic bacteria --- purple nonsulfur bacteria --- massive blooms --- pufM gene --- Rhodovulum --- phylogenomics --- bioerosion --- anoxygenic phototroph --- microbiome --- euendolith --- Rhodobacter capsulatus --- Rhodobacter sphaeroides --- photooxidative stress --- transcriptomics --- proteomics --- stress defense --- heliobacteria --- Heliorestis convoluta --- alkaliphilic bacteria --- soda lake --- bacteriochlorophyll g --- biological soil crust --- drylands --- niche partitioning --- nitrogen fixing cyanobacteria --- Alphaproteobacteria --- Rhodobacteraceae --- nitric oxide --- quorum sensing --- gene transfer agent --- motility --- Crp/Fnr --- Dnr --- RegA --- ChpT --- green sulfur bacteria --- syntrophy --- e-pili --- adhesion protein --- photosynthetic symbionts --- large multiheme cytochrome --- metagenomic binning --- genomes of photosynthetic bacteria --- glycine betaine biosynthesis --- ectoine biosynthesis --- osmotic adaptation --- phylogeny of osmolyte biosynthesis --- filamentous anoxygenic phototroph --- microbial mats --- hot springs --- metatranscriptomics --- energy metabolism --- carbon fixation --- aerobic anoxygenic phototrophic bacteria --- bacteriochlorophyll a --- photosynthesis genes --- rhodopsin --- Sphingomonadaceae --- aerobic anoxygenic phototrophs --- siderophore --- metallophore --- CAS assay --- Chromocurvus halotolerans strain EG19 --- n/a
Choose an application
The application of genomic, transcriptomic, and proteomic analyses brings new dimensions to our understanding of the biology of phototrophic bacteria. Comparing gene sequences of photosynthetic reaction center proteins and a key enzyme of bacteriochlorophyll biosynthesis from more than 150 genomes demonstrates the ancient roots of phototrophic bacteria. The presence and phylogeny of biosynthetic pathways of the compatible solutes ectoine and glycine betaine define groups of marine and halophilic phototrophic bacteria. The wide range of ecological niches conquered during evolution is demonstrated by the adaptation of cyanobacterial genera Scytonema, Tolypothrix, and Nostoc to different temperature ranges and the adaptation of Heliorestis species to alkaline habitats. Differences between phototrophic purple bacteria from marine and freshwater habitats are reflected in the preference for sulfidic and non-sulfidic niches. Also, a high proportion of siderophore producers was found among isolates from freshwater sources opposed to those from salty habitats . The primary colonization of carbonate rocks by a group of novel endolithic cyanobacteria and the following successions were studied over 9 months. The genomic characterization of the aerobic Dinoroseobacter strain AAP5, the strictly anaerobic and syntrophic Prosthecochloris ethylica, and the strictly anaerobic Heliorestis convoluta is reported. Significant differences in relation to oxygen are reflected in oxygen production by some species, oxygen tolerance over a wide range of concentrations, and the use of oxygen for energy generation or a strictly anaerobic lifestyle. Relations to oxygen are highlighted in papers on photooxidative stress, regulation of iron–sulfur cluster formation, and interactions of redox regulators. In situ metatranscriptomic and proteomic studies demonstrate the high metabolic flexibility of Chloroflexus aggregans in a hot spring microbial mat and show its adaptation to the changing conditions over day and night periods by a well-coordinated regulation of key metabolic processes for both phototrophic and chemotrophic growth.
Research & information: general --- phylogeny --- photosynthetic reaction center proteins --- bacteriochlorophyll biosynthesis --- phototrophic purple bacteria --- evolution of anoxygenic photosynthesis --- iron-sulfur cluster --- isc genes --- suf genes --- antisense promoters --- OxyR --- IscR --- Irr --- anoxygenic phototrophic bacteria --- purple nonsulfur bacteria --- massive blooms --- pufM gene --- Rhodovulum --- phylogenomics --- bioerosion --- anoxygenic phototroph --- microbiome --- euendolith --- Rhodobacter capsulatus --- Rhodobacter sphaeroides --- photooxidative stress --- transcriptomics --- proteomics --- stress defense --- heliobacteria --- Heliorestis convoluta --- alkaliphilic bacteria --- soda lake --- bacteriochlorophyll g --- biological soil crust --- drylands --- niche partitioning --- nitrogen fixing cyanobacteria --- Alphaproteobacteria --- Rhodobacteraceae --- nitric oxide --- quorum sensing --- gene transfer agent --- motility --- Crp/Fnr --- Dnr --- RegA --- ChpT --- green sulfur bacteria --- syntrophy --- e-pili --- adhesion protein --- photosynthetic symbionts --- large multiheme cytochrome --- metagenomic binning --- genomes of photosynthetic bacteria --- glycine betaine biosynthesis --- ectoine biosynthesis --- osmotic adaptation --- phylogeny of osmolyte biosynthesis --- filamentous anoxygenic phototroph --- microbial mats --- hot springs --- metatranscriptomics --- energy metabolism --- carbon fixation --- aerobic anoxygenic phototrophic bacteria --- bacteriochlorophyll a --- photosynthesis genes --- rhodopsin --- Sphingomonadaceae --- aerobic anoxygenic phototrophs --- siderophore --- metallophore --- CAS assay --- Chromocurvus halotolerans strain EG19
Choose an application
Aquaculture is an important economic activity for food production all around the world that has experienced an exponential growth during the last few decades. However, several weaknesses and bottlenecks still need to be addressed in order to improve the aquaculture productive system. The recent fast development of the omics technologies has provided scientists with meaningful tools to elucidate the molecular basis of their research interests. This reprint compiles different works about the use of transcriptomics and genomics technologies in different aspects of the aquaculture research, such as immunity, stress response, development, sexual dimorphism, among others, in a variety of fish and shellfish, and even in turtles. Different transcriptome (mRNAs and non-coding RNAs (ncRNAs)), genome (Single Nucleotide Polymorphisms (SNPs)), and metatranscriptome analyses were conducted to unravel those different aspects of interest.
Research & information: general --- Biology, life sciences --- Fisheries & related industries --- RNA-Seq --- lncRNAs --- Dicentrarchus labrax --- viral infection --- nodavirus --- immune response --- fish --- T lymphocytes --- infection --- malnutrition --- inflammation --- aquaculture --- histopathology --- immunohistochemistry --- enteromyxosis --- Philasterides dicentrarchi --- turbot --- transcriptomics --- Chinese mitten crab --- Eriocheir sinensis --- transportome --- transporters --- salinity --- osmoregulation --- transcriptome --- meta-analysis --- gills --- short pentraxins --- c-reactive protein --- zebrafish --- transcript expression --- antiviral --- SVCV --- rag1 mutants --- skin --- mucosal immunity --- hypoxia --- hypo-metabolic state --- growth --- swimming performance --- metabolic landmarks --- muscle transcriptome --- glycolysis --- lipid metabolism --- protein turnover --- gilthead sea bream --- hepatopancreas necrosis disease --- metatranscriptomics sequencing --- hepatopancreatic flora --- teleost --- B cells --- single cell transcriptomics --- immunoglobulins --- immune markers --- transcription factors --- long non-coding RNAs --- hepatic transcript expression --- salmon --- microarray --- omega-6/omega-3 ratio --- nutrigenomics --- fatty acids --- liver --- muscle --- Misgurnus anguillicaudatus --- sexual size dimorphism --- polyploid size dimorphism --- comparative transcriptome --- gene expression --- edible red sea urchin --- Loxechinus albus --- RNA-seq --- reference transcriptome --- Chinese soft-shelled turtle --- Aeromonas hydrophila --- hemorrhagic sepsis --- molecular immunopathogenesis --- tripartite motif proteins --- B30.2 domain --- antiviral immunity --- Ctenopharyngodon idella --- grass carp reovirus --- metamorphosis --- brain --- RNA --- sequencing --- intermuscular bone --- development --- Megalobrama amblycephala --- Oreochromis niloticus --- histological structure --- Atlantic salmon --- smoltification --- genome --- mRNAs --- miRNAs --- sox family genes --- Pelodiscus sinensis --- estradiol --- pseudo-female --- sex-related --- heterosis --- heterobeltiosis --- environment --- transgressive genes --- conserved miRNA --- high-throughput sequencing --- lumpfish --- novel miRNA --- RT-qPCR --- heat shock protein --- co-chaperon network --- salinity-alkalinity adaptation --- molecular evolution --- Lateolabrax maculatus --- genomics --- stress response --- HPI-axis --- neuroendocrine-immune interaction --- common carp --- poly-unsaturated fatty acid --- fatty acid elongase --- association study --- genomic selection --- bulked segregant analysis --- SNP --- association analysis --- joint effect --- seawater adaptation --- microRNAs --- small-RNA sequencing --- microarray transcriptome --- European seabass --- chronic inflammation --- opioid receptors --- immune status --- whole-transcriptome sequencing --- sex differentiation --- non-coding RNAs --- ceRNA --- red cusk-eel --- thermal stress --- liver transcriptome --- oxidative damage --- protein folding --- hepatic enzymes --- n/a
Listing 1 - 10 of 10 |
Sort by
|