Listing 1 - 10 of 11 | << page >> |
Sort by
|
Choose an application
This book presents numerical, experimental, and analytical analysis of convective and radiative heat transfer in various engineering and natural systems, including transport phenomena in heat exchangers and furnaces, cooling of electronic heat-generating elements, and thin-film flows in various technical systems. It is well known that such heat transfer mechanisms are dominant in the systems under consideration. Therefore, in-depth study of these regimes is vital for both the growth of industry and the preservation of natural resources. The authors included in this book present insightful and provocative studies on convective and radiative heat transfer using modern analytical techniques. This book will be very useful for academics, engineers, and advanced students.
Research & information: general --- mixed convection --- nanofluids --- thermal radiation --- heat source/sink --- dual solutions --- stability analysis --- convection --- local heat-generating element --- surface radiation --- Ostrogradsky number --- finite difference method --- nanofluid --- stagnation sheet --- three-dimensional flow --- slip condition --- vortex --- heat --- dimple --- channel --- simulation --- efficiency of annular fin --- analytical and numerical method --- computational fluid dynamics --- fin base temperature --- non-Newtonian fluid --- natural convection --- heat source of volumetric heat generation --- PCMs --- storage tank --- photovoltaic --- computational fluid dynamics (CFD) --- finite elements --- turbulent bubbly flow --- sudden pipe expansion --- measurements --- modeling --- wall friction --- heat transfer modification --- heat transfer --- free convection --- cylinder --- tube array --- numerical investigation --- semi-analytical model --- vapor --- liquid --- bubble --- two-phase heat transfer --- adiabatic calorimetry --- numerical simulation --- heat capacity --- finite-element method --- thin film --- boundary layer --- thermocapillarity --- triple solutions --- Carreau fluid --- tempering --- heat treatment --- electric furnace --- CFD simulation --- thermal efficiency
Choose an application
This book presents numerical, experimental, and analytical analysis of convective and radiative heat transfer in various engineering and natural systems, including transport phenomena in heat exchangers and furnaces, cooling of electronic heat-generating elements, and thin-film flows in various technical systems. It is well known that such heat transfer mechanisms are dominant in the systems under consideration. Therefore, in-depth study of these regimes is vital for both the growth of industry and the preservation of natural resources. The authors included in this book present insightful and provocative studies on convective and radiative heat transfer using modern analytical techniques. This book will be very useful for academics, engineers, and advanced students.
mixed convection --- nanofluids --- thermal radiation --- heat source/sink --- dual solutions --- stability analysis --- convection --- local heat-generating element --- surface radiation --- Ostrogradsky number --- finite difference method --- nanofluid --- stagnation sheet --- three-dimensional flow --- slip condition --- vortex --- heat --- dimple --- channel --- simulation --- efficiency of annular fin --- analytical and numerical method --- computational fluid dynamics --- fin base temperature --- non-Newtonian fluid --- natural convection --- heat source of volumetric heat generation --- PCMs --- storage tank --- photovoltaic --- computational fluid dynamics (CFD) --- finite elements --- turbulent bubbly flow --- sudden pipe expansion --- measurements --- modeling --- wall friction --- heat transfer modification --- heat transfer --- free convection --- cylinder --- tube array --- numerical investigation --- semi-analytical model --- vapor --- liquid --- bubble --- two-phase heat transfer --- adiabatic calorimetry --- numerical simulation --- heat capacity --- finite-element method --- thin film --- boundary layer --- thermocapillarity --- triple solutions --- Carreau fluid --- tempering --- heat treatment --- electric furnace --- CFD simulation --- thermal efficiency
Choose an application
This book presents numerical, experimental, and analytical analysis of convective and radiative heat transfer in various engineering and natural systems, including transport phenomena in heat exchangers and furnaces, cooling of electronic heat-generating elements, and thin-film flows in various technical systems. It is well known that such heat transfer mechanisms are dominant in the systems under consideration. Therefore, in-depth study of these regimes is vital for both the growth of industry and the preservation of natural resources. The authors included in this book present insightful and provocative studies on convective and radiative heat transfer using modern analytical techniques. This book will be very useful for academics, engineers, and advanced students.
Research & information: general --- mixed convection --- nanofluids --- thermal radiation --- heat source/sink --- dual solutions --- stability analysis --- convection --- local heat-generating element --- surface radiation --- Ostrogradsky number --- finite difference method --- nanofluid --- stagnation sheet --- three-dimensional flow --- slip condition --- vortex --- heat --- dimple --- channel --- simulation --- efficiency of annular fin --- analytical and numerical method --- computational fluid dynamics --- fin base temperature --- non-Newtonian fluid --- natural convection --- heat source of volumetric heat generation --- PCMs --- storage tank --- photovoltaic --- computational fluid dynamics (CFD) --- finite elements --- turbulent bubbly flow --- sudden pipe expansion --- measurements --- modeling --- wall friction --- heat transfer modification --- heat transfer --- free convection --- cylinder --- tube array --- numerical investigation --- semi-analytical model --- vapor --- liquid --- bubble --- two-phase heat transfer --- adiabatic calorimetry --- numerical simulation --- heat capacity --- finite-element method --- thin film --- boundary layer --- thermocapillarity --- triple solutions --- Carreau fluid --- tempering --- heat treatment --- electric furnace --- CFD simulation --- thermal efficiency
Choose an application
As faster and more efficient numerical algorithms become available, the understanding of the physics and the mathematical foundation behind these new methods will play an increasingly important role. This Special Issue provides a platform for researchers from both academia and industry to present their novel computational methods that have engineering and physics applications.
radial basis functions --- finite difference methods --- traveling waves --- non-uniform grids --- chaotic oscillator --- one-step method --- multi-step method --- computer arithmetic --- FPGA --- high strain rate impact --- modeling and simulation --- smoothed particle hydrodynamics --- finite element analysis --- hybrid nanofluid --- heat transfer --- non-isothermal --- shrinking surface --- MHD --- radiation --- multilayer perceptrons --- quaternion neural networks --- metaheuristic optimization --- genetic algorithms --- micropolar fluid --- constricted channel --- MHD pulsatile flow --- strouhal number --- flow pulsation parameter --- multiple integral finite volume method --- finite difference method --- Rosenau-KdV --- conservation --- solvability --- convergence --- transmission electron microscopy (TEM) --- convolutional neural networks (CNN) --- anomaly detection --- principal component analysis (PCA) --- machine learning --- deep learning --- neural networks --- Gallium-Arsenide (GaAs) --- radiation-based flowmeter --- two-phase flow --- feature extraction --- artificial intelligence --- time domain --- Boltzmann equation --- collision integral --- convolutional neural network --- annular regime --- scale layer-independent --- petroleum pipeline --- volume fraction --- dual energy technique --- prescribed heat flux --- similarity solutions --- dual solutions --- stability analysis --- RBF-FD --- node sampling --- lebesgue constant --- complex regions --- finite-difference methods --- data assimilation --- model order reduction --- finite elements analysis --- high dimensional data --- welding
Choose an application
As faster and more efficient numerical algorithms become available, the understanding of the physics and the mathematical foundation behind these new methods will play an increasingly important role. This Special Issue provides a platform for researchers from both academia and industry to present their novel computational methods that have engineering and physics applications.
Research & information: general --- Mathematics & science --- radial basis functions --- finite difference methods --- traveling waves --- non-uniform grids --- chaotic oscillator --- one-step method --- multi-step method --- computer arithmetic --- FPGA --- high strain rate impact --- modeling and simulation --- smoothed particle hydrodynamics --- finite element analysis --- hybrid nanofluid --- heat transfer --- non-isothermal --- shrinking surface --- MHD --- radiation --- multilayer perceptrons --- quaternion neural networks --- metaheuristic optimization --- genetic algorithms --- micropolar fluid --- constricted channel --- MHD pulsatile flow --- strouhal number --- flow pulsation parameter --- multiple integral finite volume method --- finite difference method --- Rosenau-KdV --- conservation --- solvability --- convergence --- transmission electron microscopy (TEM) --- convolutional neural networks (CNN) --- anomaly detection --- principal component analysis (PCA) --- machine learning --- deep learning --- neural networks --- Gallium-Arsenide (GaAs) --- radiation-based flowmeter --- two-phase flow --- feature extraction --- artificial intelligence --- time domain --- Boltzmann equation --- collision integral --- convolutional neural network --- annular regime --- scale layer-independent --- petroleum pipeline --- volume fraction --- dual energy technique --- prescribed heat flux --- similarity solutions --- dual solutions --- stability analysis --- RBF-FD --- node sampling --- lebesgue constant --- complex regions --- finite-difference methods --- data assimilation --- model order reduction --- finite elements analysis --- high dimensional data --- welding
Choose an application
The most influential research topic in the twenty-first century seems to be mathematics, as it generates innovation in a wide range of research fields. It supports all engineering fields, but also areas such as medicine, healthcare, business, etc. Therefore, the intention of this Special Issue is to deal with mathematical works related to engineering and multidisciplinary problems. Modern developments in theoretical and applied science have widely depended our knowledge of the derivatives and integrals of the fractional order appearing in engineering practices. Therefore, one goal of this Special Issue is to focus on recent achievements and future challenges in the theory and applications of fractional calculus in engineering sciences. The special issue included some original research articles that address significant issues and contribute towards the development of new concepts, methodologies, applications, trends and knowledge in mathematics. Potential topics include, but are not limited to, the following: Fractional mathematical models; Computational methods for the fractional PDEs in engineering; New mathematical approaches, innovations and challenges in biotechnologies and biomedicine; Applied mathematics; Engineering research based on advanced mathematical tools.
Technology: general issues --- History of engineering & technology --- fractional order IMC --- first order plus dead-time processes --- event-based implementation --- numerical simulations --- comparative closed loop results --- nonlinear wave phenomen --- RBF --- local RBF-FD --- stability --- unmanned aerial vehicle (UAV) --- quaternion-based estimator --- low-cost design --- automatic optical inspection --- kinetic theory --- parallel robots --- robust control --- sliding mode control --- basinI --- basinII --- mean pressure head --- pressure head with different probabilities of occurrence --- standard deviation of the pressure fluctuations --- statistical modeling --- USBR --- desalination --- humidification-dehumidification --- waste heat recovery --- mathematical model --- yearly analysis --- thermo-economics --- multi-objective optimization --- cruise altitude --- fuel consumption --- time to climb --- Hermite-Simpson method --- trajectory optimization --- terminal residual analysis (TRA) --- m-σ terminal residual analysis (m-σ TRA) --- power transformer --- stray losses --- analytical methods --- finite element method --- gridshell structures --- shape ratio --- length ratio --- regularity --- particle swarm optimization --- genetic algorithm --- hybrid nanofluid --- dual solutions --- mixed convection --- stagnation point --- radiation --- stability analysis --- machine learning --- eXterme Gradient Boosting --- Computation Fluid Dynamics --- blade vibration --- unsteady aerodynamic model --- active disturbance rejection control (ADRC) --- multiobjective optimization --- time delay systems --- tuning rules --- soft robotics --- fractional calculus --- CACSD toolbox --- operating point linearization --- automatic uncertainty bound computation --- Model-in-the-Loop simulation --- hybrid simulation --- ℋ∞ control --- μ synthesis --- DC-to-DC power converters --- buck --- boost --- SEPIC --- rainfall-runoff model --- curve number --- inferential statistics --- 3D runoff difference model --- model calibration --- PAT model --- modified affinity laws --- hydraulic simulation tool --- μ-synthesis --- fractional-order control --- swarm optimization --- artificial bee colony optimization --- CNC machine --- mixed sensitivity --- D–K iteration --- Linear Matrix Inequality --- biotechnology --- fermentation process --- batch bioreactors --- modeling --- control system design and synthesis --- linear control --- adaptive control --- model reference adaptive control --- control system realization --- mixed-sensitivity --- FO-PID --- twin rotor aerodynamic system
Choose an application
Over the past four decades, there has been increased attention given to the research of fluid mechanics due to its wide application in industry and phycology. Major advances in the modeling of key topics such Newtonian and non-Newtonian fluids and thin film flows have been made and finally published in the Special Issue of coatings. This is an attempt to edit the Special Issue into a book. Although this book is not a formal textbook, it will definitely be useful for university teachers, research students, industrial researchers and in overcoming the difficulties occurring in the said topic, while dealing with the nonlinear governing equations. For such types of equations, it is often more difficult to find an analytical solution or even a numerical one. This book has successfully handled this challenging job with the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.
Technology: general issues --- Synovial fluid --- coating --- shear-thinning and -thickening models --- mass transport --- asymmetric channel --- analytical solution --- thin film --- spin coating --- rotating disk --- nanoparticles --- Newtonian fluids --- coatings --- curved stretched surface --- nanoliquid --- nonlinear thermal radiation --- entropy generation --- Reiner-Phillipoff fluid --- time-dependent --- thermal radiation --- homotopy analysis method (HAM) --- thin film of micropolar fluid --- porous medium --- thermophoresis --- skin friction --- Nusselt number and Sherwood number --- variable thickness of the liquid film --- HAM --- optical fiber coating --- double-layer coating --- viscoelastic PTT fluid --- analytic and numerical simulations --- thin film casson nanofluid --- SWCNTs and MWCNTs --- stretching cylinder --- MHD --- unsteady flow and heat transfer --- nanofluid --- Blasius–Rayleigh–Stokes variable --- dual solutions --- numerical solution --- correlation expressions --- Casson fluid --- condensation film --- heat generation/consumption --- thin liquid film flow --- carbon nanotubes --- Cattaneo-Christov heat flux --- variable heat source/sink --- heated bi-phase flow --- couple stress fluid --- lubrication effects --- slippery walls --- magnetohydrodynamics --- Darcy-Forchheimer nanofluid --- nonlinear extending disc --- variable thin layer --- HAM and numerical method --- peristaltic flow --- an endoscope --- variable viscosity --- Adomian solutions --- different wave forms --- pseudo-similarity variable --- micropolar nanofluid --- darcy forchheimer model --- MHD flow --- triple solution --- stability analysis --- APCM --- Caputo derivative --- unsteady flow --- shrinking surface --- Williamson model --- peristaltic pumping --- convective boundary conditions --- analytic solutions --- second order slip --- double stratification --- Cattaneo–Christov heat flux --- variable thermal conductivity --- Williamson nanofluid --- velocity second slip --- wave forms --- exact solutions --- magnetic field --- heat and mass transfer --- Hall current --- homogeneous–heterogeneous reactions --- viscoelastic fluids --- heterogeneous–homogeneous reactions --- mixed convective flow --- binary chemical reaction --- arrhenius activation energy --- gas-liquid coatings --- bubbles --- two-fluid model --- phase distribution --- HPM --- double diffusion --- curved channel --- compliant walls --- analytical solutions --- third grade fluid model --- hybrid nanofluid --- induced magnetic field --- mixed convection --- heat generation --- peristalsis --- cilia beating --- Non-Newtonian --- Bejan number --- Jeffrey fluid model --- eccentric annuli --- droplet impact modelling --- impedance analysis --- rain erosion --- ultrasound measurements --- viscoelastic modelling --- wind turbine blades --- computational modelling --- rain erosion testing --- viscoelastic characterization --- development and characterization of coatings --- applications of thin films --- nanostructured materials --- surfaces and interfaces --- applications of multiphase fluids --- mathematical modeling on biological applications --- electronics --- magnetics and magneto-optics
Choose an application
Over the past four decades, there has been increased attention given to the research of fluid mechanics due to its wide application in industry and phycology. Major advances in the modeling of key topics such Newtonian and non-Newtonian fluids and thin film flows have been made and finally published in the Special Issue of coatings. This is an attempt to edit the Special Issue into a book. Although this book is not a formal textbook, it will definitely be useful for university teachers, research students, industrial researchers and in overcoming the difficulties occurring in the said topic, while dealing with the nonlinear governing equations. For such types of equations, it is often more difficult to find an analytical solution or even a numerical one. This book has successfully handled this challenging job with the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.
Synovial fluid --- coating --- shear-thinning and -thickening models --- mass transport --- asymmetric channel --- analytical solution --- thin film --- spin coating --- rotating disk --- nanoparticles --- Newtonian fluids --- coatings --- curved stretched surface --- nanoliquid --- nonlinear thermal radiation --- entropy generation --- Reiner-Phillipoff fluid --- time-dependent --- thermal radiation --- homotopy analysis method (HAM) --- thin film of micropolar fluid --- porous medium --- thermophoresis --- skin friction --- Nusselt number and Sherwood number --- variable thickness of the liquid film --- HAM --- optical fiber coating --- double-layer coating --- viscoelastic PTT fluid --- analytic and numerical simulations --- thin film casson nanofluid --- SWCNTs and MWCNTs --- stretching cylinder --- MHD --- unsteady flow and heat transfer --- nanofluid --- Blasius–Rayleigh–Stokes variable --- dual solutions --- numerical solution --- correlation expressions --- Casson fluid --- condensation film --- heat generation/consumption --- thin liquid film flow --- carbon nanotubes --- Cattaneo-Christov heat flux --- variable heat source/sink --- heated bi-phase flow --- couple stress fluid --- lubrication effects --- slippery walls --- magnetohydrodynamics --- Darcy-Forchheimer nanofluid --- nonlinear extending disc --- variable thin layer --- HAM and numerical method --- peristaltic flow --- an endoscope --- variable viscosity --- Adomian solutions --- different wave forms --- pseudo-similarity variable --- micropolar nanofluid --- darcy forchheimer model --- MHD flow --- triple solution --- stability analysis --- APCM --- Caputo derivative --- unsteady flow --- shrinking surface --- Williamson model --- peristaltic pumping --- convective boundary conditions --- analytic solutions --- second order slip --- double stratification --- Cattaneo–Christov heat flux --- variable thermal conductivity --- Williamson nanofluid --- velocity second slip --- wave forms --- exact solutions --- magnetic field --- heat and mass transfer --- Hall current --- homogeneous–heterogeneous reactions --- viscoelastic fluids --- heterogeneous–homogeneous reactions --- mixed convective flow --- binary chemical reaction --- arrhenius activation energy --- gas-liquid coatings --- bubbles --- two-fluid model --- phase distribution --- HPM --- double diffusion --- curved channel --- compliant walls --- analytical solutions --- third grade fluid model --- hybrid nanofluid --- induced magnetic field --- mixed convection --- heat generation --- peristalsis --- cilia beating --- Non-Newtonian --- Bejan number --- Jeffrey fluid model --- eccentric annuli --- droplet impact modelling --- impedance analysis --- rain erosion --- ultrasound measurements --- viscoelastic modelling --- wind turbine blades --- computational modelling --- rain erosion testing --- viscoelastic characterization --- development and characterization of coatings --- applications of thin films --- nanostructured materials --- surfaces and interfaces --- applications of multiphase fluids --- mathematical modeling on biological applications --- electronics --- magnetics and magneto-optics
Choose an application
The most influential research topic in the twenty-first century seems to be mathematics, as it generates innovation in a wide range of research fields. It supports all engineering fields, but also areas such as medicine, healthcare, business, etc. Therefore, the intention of this Special Issue is to deal with mathematical works related to engineering and multidisciplinary problems. Modern developments in theoretical and applied science have widely depended our knowledge of the derivatives and integrals of the fractional order appearing in engineering practices. Therefore, one goal of this Special Issue is to focus on recent achievements and future challenges in the theory and applications of fractional calculus in engineering sciences. The special issue included some original research articles that address significant issues and contribute towards the development of new concepts, methodologies, applications, trends and knowledge in mathematics. Potential topics include, but are not limited to, the following: Fractional mathematical models; Computational methods for the fractional PDEs in engineering; New mathematical approaches, innovations and challenges in biotechnologies and biomedicine; Applied mathematics; Engineering research based on advanced mathematical tools.
fractional order IMC --- first order plus dead-time processes --- event-based implementation --- numerical simulations --- comparative closed loop results --- nonlinear wave phenomen --- RBF --- local RBF-FD --- stability --- unmanned aerial vehicle (UAV) --- quaternion-based estimator --- low-cost design --- automatic optical inspection --- kinetic theory --- parallel robots --- robust control --- sliding mode control --- basinI --- basinII --- mean pressure head --- pressure head with different probabilities of occurrence --- standard deviation of the pressure fluctuations --- statistical modeling --- USBR --- desalination --- humidification-dehumidification --- waste heat recovery --- mathematical model --- yearly analysis --- thermo-economics --- multi-objective optimization --- cruise altitude --- fuel consumption --- time to climb --- Hermite-Simpson method --- trajectory optimization --- terminal residual analysis (TRA) --- m-σ terminal residual analysis (m-σ TRA) --- power transformer --- stray losses --- analytical methods --- finite element method --- gridshell structures --- shape ratio --- length ratio --- regularity --- particle swarm optimization --- genetic algorithm --- hybrid nanofluid --- dual solutions --- mixed convection --- stagnation point --- radiation --- stability analysis --- machine learning --- eXterme Gradient Boosting --- Computation Fluid Dynamics --- blade vibration --- unsteady aerodynamic model --- active disturbance rejection control (ADRC) --- multiobjective optimization --- time delay systems --- tuning rules --- soft robotics --- fractional calculus --- CACSD toolbox --- operating point linearization --- automatic uncertainty bound computation --- Model-in-the-Loop simulation --- hybrid simulation --- ℋ∞ control --- μ synthesis --- DC-to-DC power converters --- buck --- boost --- SEPIC --- rainfall-runoff model --- curve number --- inferential statistics --- 3D runoff difference model --- model calibration --- PAT model --- modified affinity laws --- hydraulic simulation tool --- μ-synthesis --- fractional-order control --- swarm optimization --- artificial bee colony optimization --- CNC machine --- mixed sensitivity --- D–K iteration --- Linear Matrix Inequality --- biotechnology --- fermentation process --- batch bioreactors --- modeling --- control system design and synthesis --- linear control --- adaptive control --- model reference adaptive control --- control system realization --- mixed-sensitivity --- FO-PID --- twin rotor aerodynamic system
Choose an application
The most influential research topic in the twenty-first century seems to be mathematics, as it generates innovation in a wide range of research fields. It supports all engineering fields, but also areas such as medicine, healthcare, business, etc. Therefore, the intention of this Special Issue is to deal with mathematical works related to engineering and multidisciplinary problems. Modern developments in theoretical and applied science have widely depended our knowledge of the derivatives and integrals of the fractional order appearing in engineering practices. Therefore, one goal of this Special Issue is to focus on recent achievements and future challenges in the theory and applications of fractional calculus in engineering sciences. The special issue included some original research articles that address significant issues and contribute towards the development of new concepts, methodologies, applications, trends and knowledge in mathematics. Potential topics include, but are not limited to, the following: Fractional mathematical models; Computational methods for the fractional PDEs in engineering; New mathematical approaches, innovations and challenges in biotechnologies and biomedicine; Applied mathematics; Engineering research based on advanced mathematical tools.
Technology: general issues --- History of engineering & technology --- fractional order IMC --- first order plus dead-time processes --- event-based implementation --- numerical simulations --- comparative closed loop results --- nonlinear wave phenomen --- RBF --- local RBF-FD --- stability --- unmanned aerial vehicle (UAV) --- quaternion-based estimator --- low-cost design --- automatic optical inspection --- kinetic theory --- parallel robots --- robust control --- sliding mode control --- basinI --- basinII --- mean pressure head --- pressure head with different probabilities of occurrence --- standard deviation of the pressure fluctuations --- statistical modeling --- USBR --- desalination --- humidification-dehumidification --- waste heat recovery --- mathematical model --- yearly analysis --- thermo-economics --- multi-objective optimization --- cruise altitude --- fuel consumption --- time to climb --- Hermite-Simpson method --- trajectory optimization --- terminal residual analysis (TRA) --- m-σ terminal residual analysis (m-σ TRA) --- power transformer --- stray losses --- analytical methods --- finite element method --- gridshell structures --- shape ratio --- length ratio --- regularity --- particle swarm optimization --- genetic algorithm --- hybrid nanofluid --- dual solutions --- mixed convection --- stagnation point --- radiation --- stability analysis --- machine learning --- eXterme Gradient Boosting --- Computation Fluid Dynamics --- blade vibration --- unsteady aerodynamic model --- active disturbance rejection control (ADRC) --- multiobjective optimization --- time delay systems --- tuning rules --- soft robotics --- fractional calculus --- CACSD toolbox --- operating point linearization --- automatic uncertainty bound computation --- Model-in-the-Loop simulation --- hybrid simulation --- ℋ∞ control --- μ synthesis --- DC-to-DC power converters --- buck --- boost --- SEPIC --- rainfall-runoff model --- curve number --- inferential statistics --- 3D runoff difference model --- model calibration --- PAT model --- modified affinity laws --- hydraulic simulation tool --- μ-synthesis --- fractional-order control --- swarm optimization --- artificial bee colony optimization --- CNC machine --- mixed sensitivity --- D–K iteration --- Linear Matrix Inequality --- biotechnology --- fermentation process --- batch bioreactors --- modeling --- control system design and synthesis --- linear control --- adaptive control --- model reference adaptive control --- control system realization --- mixed-sensitivity --- FO-PID --- twin rotor aerodynamic system
Listing 1 - 10 of 11 | << page >> |
Sort by
|