Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Radiation Tolerance --- Receptor, Epidermal Growth Factor --- Genetic Therapy --- Neoplasms --- Cytoprotection --- physiology --- radiotherapy
Choose an application
This book collects contributions published in the Special Issue “From a Molecule to a Drug: Chemical Features Enhancing Pharmacological Potential” and dealing with successful stories of drug improvement or design using classic protocols, quantum mechanical mechanistic investigation, or hybrid approaches such as QM/MM or QM/ML (machine learning). In the last two decades, computer-aided modeling has strongly supported scientists’ intuition to design functional molecules. High-throughput screening protocols, mainly based on classical mechanics’ atomistic potentials, are largely employed in biology and medicinal chemistry studies with the aim of simulating drug-likeness and bioactivity in terms of efficient binding to the target receptors. The advantages of this approach are quick outcomes, the possibility of repurposing commercially available drugs, consolidated protocols, and the availability of large databases. On the other hand, these studies do not intrinsically provide reactivity information, which requires quantum mechanical methodologies that are only applicable to significantly smaller and simplified systems at present. These latter studies focus on the drug itself, considering the chemical properties related to its structural features and motifs. Overall, such simulations provide necessary insights for a better understanding of the chemistry principles that rule the diseases at the molecular level, as well as possible mechanisms for restoring the physiological equilibrium.
Medicine --- Pharmacology --- SARS-CoV-2 --- benzoic acid derivatives --- gallic acid --- molecular docking --- reactivity parameters --- selenoxide elimination --- one-pot --- imine-enamine --- reaction mechanism --- DFT calculations --- selenium --- anti-inflammatory drugs --- QSAR --- pain management --- cyclooxygenase --- multitarget drug --- cannabinoid --- neuropathic pain --- clopidogrel --- NMR study --- oxone --- peroxymonosulfate --- sodium halide --- thienopyridine --- drug discovery --- precision medicine --- pharmacodynamics --- pharmacokinetics --- coronavirus SARS-CoV-2 --- COVID-19 --- 3-chymotrypsin-like protease --- pyrimidonic pharmaceuticals --- molecular dynamics simulations --- binding free energy --- β-carrageenan --- antioxidant activity --- Box-Behken --- extraction --- Eucheuma gelatinae --- physic-chemistry --- rheology --- quercetin --- quercetin 3-O-glucuronide --- cisplatin --- nephrotoxicity --- cytoprotection --- lithium therapy --- neurocytology --- toxicology --- neuroprotection --- chemoinformatics --- big data --- methadone hydrochloride --- pharmaceutical solutions --- drug compounding --- high performance liquid chromatography --- stability study --- microbiology --- fucoidan --- alginate --- L-selectin --- E-selectin --- MCP-1 --- ICAM-1 --- THP-1 macrophage --- monocyte migration --- protein binding --- breast milk --- M/P ratio --- statistical modeling --- molecular descriptors --- chromatographic descriptors --- affinity chromatography --- anti-ACE --- anti-DPP-IV --- gastrointestinal digestion --- in silico --- molecular dynamics --- paramyosin --- seafood --- target fishing --- n/a
Choose an application
This book collects contributions published in the Special Issue “From a Molecule to a Drug: Chemical Features Enhancing Pharmacological Potential” and dealing with successful stories of drug improvement or design using classic protocols, quantum mechanical mechanistic investigation, or hybrid approaches such as QM/MM or QM/ML (machine learning). In the last two decades, computer-aided modeling has strongly supported scientists’ intuition to design functional molecules. High-throughput screening protocols, mainly based on classical mechanics’ atomistic potentials, are largely employed in biology and medicinal chemistry studies with the aim of simulating drug-likeness and bioactivity in terms of efficient binding to the target receptors. The advantages of this approach are quick outcomes, the possibility of repurposing commercially available drugs, consolidated protocols, and the availability of large databases. On the other hand, these studies do not intrinsically provide reactivity information, which requires quantum mechanical methodologies that are only applicable to significantly smaller and simplified systems at present. These latter studies focus on the drug itself, considering the chemical properties related to its structural features and motifs. Overall, such simulations provide necessary insights for a better understanding of the chemistry principles that rule the diseases at the molecular level, as well as possible mechanisms for restoring the physiological equilibrium.
SARS-CoV-2 --- benzoic acid derivatives --- gallic acid --- molecular docking --- reactivity parameters --- selenoxide elimination --- one-pot --- imine-enamine --- reaction mechanism --- DFT calculations --- selenium --- anti-inflammatory drugs --- QSAR --- pain management --- cyclooxygenase --- multitarget drug --- cannabinoid --- neuropathic pain --- clopidogrel --- NMR study --- oxone --- peroxymonosulfate --- sodium halide --- thienopyridine --- drug discovery --- precision medicine --- pharmacodynamics --- pharmacokinetics --- coronavirus SARS-CoV-2 --- COVID-19 --- 3-chymotrypsin-like protease --- pyrimidonic pharmaceuticals --- molecular dynamics simulations --- binding free energy --- β-carrageenan --- antioxidant activity --- Box-Behken --- extraction --- Eucheuma gelatinae --- physic-chemistry --- rheology --- quercetin --- quercetin 3-O-glucuronide --- cisplatin --- nephrotoxicity --- cytoprotection --- lithium therapy --- neurocytology --- toxicology --- neuroprotection --- chemoinformatics --- big data --- methadone hydrochloride --- pharmaceutical solutions --- drug compounding --- high performance liquid chromatography --- stability study --- microbiology --- fucoidan --- alginate --- L-selectin --- E-selectin --- MCP-1 --- ICAM-1 --- THP-1 macrophage --- monocyte migration --- protein binding --- breast milk --- M/P ratio --- statistical modeling --- molecular descriptors --- chromatographic descriptors --- affinity chromatography --- anti-ACE --- anti-DPP-IV --- gastrointestinal digestion --- in silico --- molecular dynamics --- paramyosin --- seafood --- target fishing --- n/a
Choose an application
This book collects contributions published in the Special Issue “From a Molecule to a Drug: Chemical Features Enhancing Pharmacological Potential” and dealing with successful stories of drug improvement or design using classic protocols, quantum mechanical mechanistic investigation, or hybrid approaches such as QM/MM or QM/ML (machine learning). In the last two decades, computer-aided modeling has strongly supported scientists’ intuition to design functional molecules. High-throughput screening protocols, mainly based on classical mechanics’ atomistic potentials, are largely employed in biology and medicinal chemistry studies with the aim of simulating drug-likeness and bioactivity in terms of efficient binding to the target receptors. The advantages of this approach are quick outcomes, the possibility of repurposing commercially available drugs, consolidated protocols, and the availability of large databases. On the other hand, these studies do not intrinsically provide reactivity information, which requires quantum mechanical methodologies that are only applicable to significantly smaller and simplified systems at present. These latter studies focus on the drug itself, considering the chemical properties related to its structural features and motifs. Overall, such simulations provide necessary insights for a better understanding of the chemistry principles that rule the diseases at the molecular level, as well as possible mechanisms for restoring the physiological equilibrium.
Medicine --- Pharmacology --- SARS-CoV-2 --- benzoic acid derivatives --- gallic acid --- molecular docking --- reactivity parameters --- selenoxide elimination --- one-pot --- imine-enamine --- reaction mechanism --- DFT calculations --- selenium --- anti-inflammatory drugs --- QSAR --- pain management --- cyclooxygenase --- multitarget drug --- cannabinoid --- neuropathic pain --- clopidogrel --- NMR study --- oxone --- peroxymonosulfate --- sodium halide --- thienopyridine --- drug discovery --- precision medicine --- pharmacodynamics --- pharmacokinetics --- coronavirus SARS-CoV-2 --- COVID-19 --- 3-chymotrypsin-like protease --- pyrimidonic pharmaceuticals --- molecular dynamics simulations --- binding free energy --- β-carrageenan --- antioxidant activity --- Box-Behken --- extraction --- Eucheuma gelatinae --- physic-chemistry --- rheology --- quercetin --- quercetin 3-O-glucuronide --- cisplatin --- nephrotoxicity --- cytoprotection --- lithium therapy --- neurocytology --- toxicology --- neuroprotection --- chemoinformatics --- big data --- methadone hydrochloride --- pharmaceutical solutions --- drug compounding --- high performance liquid chromatography --- stability study --- microbiology --- fucoidan --- alginate --- L-selectin --- E-selectin --- MCP-1 --- ICAM-1 --- THP-1 macrophage --- monocyte migration --- protein binding --- breast milk --- M/P ratio --- statistical modeling --- molecular descriptors --- chromatographic descriptors --- affinity chromatography --- anti-ACE --- anti-DPP-IV --- gastrointestinal digestion --- in silico --- molecular dynamics --- paramyosin --- seafood --- target fishing
Choose an application
Neurotoxicology --- Toxicology --- Neurotoxic agents --- Nervous system --- Neurosciences --- Neurons --- Apoptosis --- Cytoprotection --- Nerve Degeneration --- Nerve Regeneration --- Neurotoxins --- Degeneration --- Regeneration --- drug effects --- Apoptosis. --- Cytoprotection. --- Nerve Degeneration. --- Nerve Regeneration. --- Neurotoxins. --- Neurosciences. --- Neurotoxic agents. --- Neurotoxicology. --- Toxicology. --- drug effects. --- Degeneration. --- Regeneration. --- Chemicals --- Neurotoxicity --- Neuropoisons --- Neurotoxicants --- Neural sciences --- Neurological sciences --- Neuroscience --- Nerve regeneration --- Neural regeneration --- Neuron regeneration --- Degeneration, Nerve --- Nerve degeneration --- Neurodegenerative disease --- Neurodegenerative diseases --- Neurodegenerative disorders --- Neuron degeneration --- Nissl degeneration --- Retrograde degeneration --- Wallerian degeneration --- Alpha-Neurotoxins --- Excitatory Neurotoxins --- Excitotoxin --- Excitotoxins --- Alpha Neurotoxins --- Neurotoxins, Excitatory --- Nerve Regenerations --- Regeneration, Nerve --- Regenerations, Nerve --- Neuron Degeneration --- Degeneration, Neuron --- Degenerations, Nerve --- Degenerations, Neuron --- Nerve Degenerations --- Neuron Degenerations --- Cell Protection --- Protection, Cell --- Apoptosis, Extrinsic Pathway --- Apoptosis, Intrinsic Pathway --- Programmed Cell Death, Type I --- Apoptoses, Extrinsic Pathway --- Apoptoses, Intrinsic Pathway --- Extrinsic Pathway Apoptoses --- Extrinsic Pathway Apoptosis --- Intrinsic Pathway Apoptoses --- Intrinsic Pathway Apoptosis --- Degeneration and regeneration --- Medicine --- Pharmacology --- Poisoning --- Poisons --- Medical sciences --- Nerve grafting --- Regeneration (Biology) --- Degeneration (Pathology) --- Nerve Transfer --- Necrosis --- Cell Death --- Clonal Deletion --- Superantigens --- Caspases --- Caspase 1 --- In Situ Nick-End Labeling --- Cellular Apoptosis Susceptibility Protein --- Genes, Transgenic, Suicide --- Organs (Anatomy) --- Cell death --- Chemistry --- Health Sciences --- Life Sciences --- Clinical Medicine --- General and Others --- Nerve Tissue Regeneration --- Nervous Tissue Regeneration --- Neural Tissue Regeneration --- Nerve Tissue Regenerations --- Nervous Tissue Regenerations --- Neural Tissue Regenerations --- Regeneration, Nerve Tissue --- Regeneration, Nervous Tissue --- Regeneration, Neural Tissue --- Tissue Regeneration, Nerve --- Tissue Regeneration, Nervous --- Tissue Regeneration, Neural --- Caspase-Dependent Apoptosis --- Classic Apoptosis --- Classical Apoptosis --- Programmed Cell Death --- Apoptosis, Caspase-Dependent --- Apoptosis, Classic --- Apoptosis, Classical --- Caspase Dependent Apoptosis --- Cell Death, Programmed --- Classic Apoptoses --- Alpha-Neurotoxin --- Excitatory Neurotoxin --- Neurotoxin --- Alpha Neurotoxin --- Neurotoxin, Excitatory --- Neurotoxicologia --- Toxicologia --- Neurotoxines --- Regeneració del sistema nerviós
Choose an application
Signal Transduction. --- Cell Communication. --- Cytoprotection. --- Translational Medical Research. --- Knowledge Translation --- Translational Medical Science --- Translational Medicine --- Translational Research, Medical --- Translational Research --- Knowledge Translations --- Medical Research, Translational --- Medical Science, Translational --- Medical Sciences, Translational --- Medical Translational Research --- Medicine, Translational --- Research, Medical Translational --- Research, Translational --- Research, Translational Medical --- Science, Translational Medical --- Sciences, Translational Medical --- Translation, Knowledge --- Translational Medical Sciences --- Translational Researchs --- Translations, Knowledge --- National Center for Advancing Translational Sciences (U.S.) --- Cell Protection --- Protection, Cell --- Cell Interaction --- Cell-to-Cell Interaction --- Cell Communications --- Cell Interactions --- Cell to Cell Interaction --- Cell-to-Cell Interactions --- Communication, Cell --- Communications, Cell --- Interaction, Cell --- Interaction, Cell-to-Cell --- Interactions, Cell --- Interactions, Cell-to-Cell --- Receptor Mediated Signal Transduction --- Signal Transduction Pathways --- Signal Transduction Systems --- Cell Signaling --- Receptor-Mediated Signal Transduction --- Signal Pathways --- Pathway, Signal --- Pathway, Signal Transduction --- Pathways, Signal --- Pathways, Signal Transduction --- Receptor-Mediated Signal Transductions --- Signal Pathway --- Signal Transduction Pathway --- Signal Transduction System --- Signal Transduction, Receptor-Mediated --- Signal Transductions --- Signal Transductions, Receptor-Mediated --- System, Signal Transduction --- Systems, Signal Transduction --- Transduction, Signal --- Transductions, Signal --- Cell Communication --- Receptor-CD3 Complex, Antigen, T-Cell --- Receptor Cross-Talk --- Feedback, Physiological --- Gasotransmitters --- Translational Research, Biomedical --- Translational Research, Biomedical.
Listing 1 - 6 of 6 |
Sort by
|