Listing 1 - 10 of 166 | << page >> |
Sort by
|
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
deep learning --- convolutional neural networks --- brain age estimation --- neurodegenerative diseases --- automated diagnosis --- brain image segmentation
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Science: general issues --- Neurosciences --- deep learning --- convolutional neural networks --- brain age estimation --- neurodegenerative diseases --- automated diagnosis --- brain image segmentation
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Science: general issues --- Neurosciences --- deep learning --- convolutional neural networks --- brain age estimation --- neurodegenerative diseases --- automated diagnosis --- brain image segmentation
Choose an application
Artificial neural networks (ANNs) and evolutionary computation methods have been successfully applied in remote sensing applications since they offer unique advantages for the analysis of remotely-sensed images. ANNs are effective in finding underlying relationships and structures within multidimensional datasets. Thanks to new sensors, we have images with more spectral bands at higher spatial resolutions, which clearly recall big data problems. For this purpose, evolutionary algorithms become the best solution for analysis. This book includes eleven high-quality papers, selected after a careful reviewing process, addressing current remote sensing problems. In the chapters of the book, superstructural optimization was suggested for the optimal design of feedforward neural networks, CNN networks were deployed for a nanosatellite payload to select images eligible for transmission to ground, a new weight feature value convolutional neural network (WFCNN) was applied for fine remote sensing image segmentation and extracting improved land-use information, mask regional-convolutional neural networks (Mask R-CNN) was employed for extracting valley fill faces, state-of-the-art convolutional neural network (CNN)-based object detection models were applied to automatically detect airplanes and ships in VHR satellite images, a coarse-to-fine detection strategy was employed to detect ships at different sizes, and a deep quadruplet network (DQN) was proposed for hyperspectral image classification.
Research & information: general --- convolutional neural network --- image segmentation --- multi-scale feature fusion --- semantic features --- Gaofen 6 --- aerial images --- land-use --- Tai’an --- convolutional neural networks (CNNs) --- feature fusion --- ship detection --- optical remote sensing images --- end-to-end detection --- transfer learning --- remote sensing --- single shot multi-box detector (SSD) --- You Look Only Once-v3 (YOLO-v3) --- Faster RCNN --- statistical features --- Gaofen-2 imagery --- winter wheat --- post-processing --- spatial distribution --- Feicheng --- China --- light detection and ranging --- LiDAR --- deep learning --- convolutional neural networks --- CNNs --- mask regional-convolutional neural networks --- mask R-CNN --- digital terrain analysis --- resource extraction --- hyperspectral image classification --- few-shot learning --- quadruplet loss --- dense network --- dilated convolutional network --- artificial neural networks --- classification --- superstructure optimization --- mixed-inter nonlinear programming --- hyperspectral images --- super-resolution --- SRGAN --- model generalization --- image downscaling --- mixed forest --- multi-label segmentation --- semantic segmentation --- unmanned aerial vehicles --- classification ensemble --- machine learning --- Sentinel-2 --- geographic information system (GIS) --- earth observation --- on-board --- microsat --- mission --- nanosat --- AI on the edge --- CNN
Choose an application
Artificial neural networks (ANNs) and evolutionary computation methods have been successfully applied in remote sensing applications since they offer unique advantages for the analysis of remotely-sensed images. ANNs are effective in finding underlying relationships and structures within multidimensional datasets. Thanks to new sensors, we have images with more spectral bands at higher spatial resolutions, which clearly recall big data problems. For this purpose, evolutionary algorithms become the best solution for analysis. This book includes eleven high-quality papers, selected after a careful reviewing process, addressing current remote sensing problems. In the chapters of the book, superstructural optimization was suggested for the optimal design of feedforward neural networks, CNN networks were deployed for a nanosatellite payload to select images eligible for transmission to ground, a new weight feature value convolutional neural network (WFCNN) was applied for fine remote sensing image segmentation and extracting improved land-use information, mask regional-convolutional neural networks (Mask R-CNN) was employed for extracting valley fill faces, state-of-the-art convolutional neural network (CNN)-based object detection models were applied to automatically detect airplanes and ships in VHR satellite images, a coarse-to-fine detection strategy was employed to detect ships at different sizes, and a deep quadruplet network (DQN) was proposed for hyperspectral image classification.
convolutional neural network --- image segmentation --- multi-scale feature fusion --- semantic features --- Gaofen 6 --- aerial images --- land-use --- Tai’an --- convolutional neural networks (CNNs) --- feature fusion --- ship detection --- optical remote sensing images --- end-to-end detection --- transfer learning --- remote sensing --- single shot multi-box detector (SSD) --- You Look Only Once-v3 (YOLO-v3) --- Faster RCNN --- statistical features --- Gaofen-2 imagery --- winter wheat --- post-processing --- spatial distribution --- Feicheng --- China --- light detection and ranging --- LiDAR --- deep learning --- convolutional neural networks --- CNNs --- mask regional-convolutional neural networks --- mask R-CNN --- digital terrain analysis --- resource extraction --- hyperspectral image classification --- few-shot learning --- quadruplet loss --- dense network --- dilated convolutional network --- artificial neural networks --- classification --- superstructure optimization --- mixed-inter nonlinear programming --- hyperspectral images --- super-resolution --- SRGAN --- model generalization --- image downscaling --- mixed forest --- multi-label segmentation --- semantic segmentation --- unmanned aerial vehicles --- classification ensemble --- machine learning --- Sentinel-2 --- geographic information system (GIS) --- earth observation --- on-board --- microsat --- mission --- nanosat --- AI on the edge --- CNN
Choose an application
Artificial neural networks (ANNs) and evolutionary computation methods have been successfully applied in remote sensing applications since they offer unique advantages for the analysis of remotely-sensed images. ANNs are effective in finding underlying relationships and structures within multidimensional datasets. Thanks to new sensors, we have images with more spectral bands at higher spatial resolutions, which clearly recall big data problems. For this purpose, evolutionary algorithms become the best solution for analysis. This book includes eleven high-quality papers, selected after a careful reviewing process, addressing current remote sensing problems. In the chapters of the book, superstructural optimization was suggested for the optimal design of feedforward neural networks, CNN networks were deployed for a nanosatellite payload to select images eligible for transmission to ground, a new weight feature value convolutional neural network (WFCNN) was applied for fine remote sensing image segmentation and extracting improved land-use information, mask regional-convolutional neural networks (Mask R-CNN) was employed for extracting valley fill faces, state-of-the-art convolutional neural network (CNN)-based object detection models were applied to automatically detect airplanes and ships in VHR satellite images, a coarse-to-fine detection strategy was employed to detect ships at different sizes, and a deep quadruplet network (DQN) was proposed for hyperspectral image classification.
Research & information: general --- convolutional neural network --- image segmentation --- multi-scale feature fusion --- semantic features --- Gaofen 6 --- aerial images --- land-use --- Tai’an --- convolutional neural networks (CNNs) --- feature fusion --- ship detection --- optical remote sensing images --- end-to-end detection --- transfer learning --- remote sensing --- single shot multi-box detector (SSD) --- You Look Only Once-v3 (YOLO-v3) --- Faster RCNN --- statistical features --- Gaofen-2 imagery --- winter wheat --- post-processing --- spatial distribution --- Feicheng --- China --- light detection and ranging --- LiDAR --- deep learning --- convolutional neural networks --- CNNs --- mask regional-convolutional neural networks --- mask R-CNN --- digital terrain analysis --- resource extraction --- hyperspectral image classification --- few-shot learning --- quadruplet loss --- dense network --- dilated convolutional network --- artificial neural networks --- classification --- superstructure optimization --- mixed-inter nonlinear programming --- hyperspectral images --- super-resolution --- SRGAN --- model generalization --- image downscaling --- mixed forest --- multi-label segmentation --- semantic segmentation --- unmanned aerial vehicles --- classification ensemble --- machine learning --- Sentinel-2 --- geographic information system (GIS) --- earth observation --- on-board --- microsat --- mission --- nanosat --- AI on the edge --- CNN
Choose an application
Deep learning has been revolutionizing many fields in computer vision, and facial informatics is one of the major fields. Novel approaches and performance breakthroughs are often reported on existing benchmarks. As the performances on existing benchmarks are close to saturation, larger and more challenging databases are being made and considered as new benchmarks, further pushing the advancement of the technologies. Considering face recognition, for example, the VGG-Face2 and Dual-Agent GAN report nearly perfect and better-than-human performances on the IARPA Janus Benchmark A (IJB-A) benchmark. More challenging benchmarks, e.g., the IARPA Janus Benchmark A (IJB-C), QMUL-SurvFace and MegaFace, are accepted as new standards for evaluating the performance of a new approach. Such an evolution is also seen in other branches of face informatics. In this Special Issue, we have selected the papers that report the latest progresses made in the following topics: 1. Face liveness detection 2. Emotion classification 3. Facial age estimation 4. Facial landmark detection We are hoping that this Special Issue will be beneficial to all fields of facial informatics.
History of engineering & technology --- deep learning --- RGB --- depth --- facial landmarking --- merging networks --- 3D geometry data --- 2D attribute maps --- fused CNN feature --- coarse-to-fine --- convolutional neural network (CNN) --- deep metric learning --- multi-task learning --- image classification --- age estimation --- generative adversarial network --- emotion classification --- facial key point detection --- facial images processing --- convolutional neural networks --- face liveness detection --- convolutional neural network --- thermal image --- external knowledge
Choose an application
Deep learning has been revolutionizing many fields in computer vision, and facial informatics is one of the major fields. Novel approaches and performance breakthroughs are often reported on existing benchmarks. As the performances on existing benchmarks are close to saturation, larger and more challenging databases are being made and considered as new benchmarks, further pushing the advancement of the technologies. Considering face recognition, for example, the VGG-Face2 and Dual-Agent GAN report nearly perfect and better-than-human performances on the IARPA Janus Benchmark A (IJB-A) benchmark. More challenging benchmarks, e.g., the IARPA Janus Benchmark A (IJB-C), QMUL-SurvFace and MegaFace, are accepted as new standards for evaluating the performance of a new approach. Such an evolution is also seen in other branches of face informatics. In this Special Issue, we have selected the papers that report the latest progresses made in the following topics: 1. Face liveness detection 2. Emotion classification 3. Facial age estimation 4. Facial landmark detection We are hoping that this Special Issue will be beneficial to all fields of facial informatics.
deep learning --- RGB --- depth --- facial landmarking --- merging networks --- 3D geometry data --- 2D attribute maps --- fused CNN feature --- coarse-to-fine --- convolutional neural network (CNN) --- deep metric learning --- multi-task learning --- image classification --- age estimation --- generative adversarial network --- emotion classification --- facial key point detection --- facial images processing --- convolutional neural networks --- face liveness detection --- convolutional neural network --- thermal image --- external knowledge
Choose an application
Many recent studies on medical image processing have involved the use of machine learning (ML) and deep learning (DL). This special issue, “Machine Learning/Deep Learning in Medical Image Processing”, has been launched to provide an opportunity for researchers in the area of medical image processing to highlight recent developments made in their fields with ML/DL. Seven excellent papers that cover a wide variety of medical/clinical aspects are selected in this special issue.
pancreas --- segmentation --- computed tomography --- deep learning --- data augmentation --- neoplasm metastasis --- ovarian neoplasms --- radiation exposure --- tomography --- x-ray computed --- prostate carcinoma --- microscopic --- convolutional neural network --- machine learning --- handcrafted --- oral carcinoma --- medical image segmentation --- colon cancer --- colon polyps --- OCT --- optical biopsy --- animal rat models --- CADx --- airway volume analysis --- artificial intelligence --- coronary artery disease --- SPECT MPI scans --- convolutional neural networks --- transfer learning --- classification models --- n/a
Choose an application
Many recent studies on medical image processing have involved the use of machine learning (ML) and deep learning (DL). This special issue, “Machine Learning/Deep Learning in Medical Image Processing”, has been launched to provide an opportunity for researchers in the area of medical image processing to highlight recent developments made in their fields with ML/DL. Seven excellent papers that cover a wide variety of medical/clinical aspects are selected in this special issue.
Technology: general issues --- pancreas --- segmentation --- computed tomography --- deep learning --- data augmentation --- neoplasm metastasis --- ovarian neoplasms --- radiation exposure --- tomography --- x-ray computed --- prostate carcinoma --- microscopic --- convolutional neural network --- machine learning --- handcrafted --- oral carcinoma --- medical image segmentation --- colon cancer --- colon polyps --- OCT --- optical biopsy --- animal rat models --- CADx --- airway volume analysis --- artificial intelligence --- coronary artery disease --- SPECT MPI scans --- convolutional neural networks --- transfer learning --- classification models
Listing 1 - 10 of 166 | << page >> |
Sort by
|