Narrow your search
Listing 1 - 8 of 8
Sort by

Book
Probabilistic and Fuzzy Approaches for Estimating the Life Cycle Costs of Buildings
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Life cycle cost (LCC) method makes it possible for the whole life performance of buildings and other structures to be optimized. The introduction of the idea of thinking in terms of a building life cycle resulted in the need to use appropriate tools and techniques for assessing and analyzing costs throughout the life cycle of the building. Traditionally, estimates of LCC have been calculated based on historical analysis of data and have used deterministic models. The concepts of probability theory can also be applied to life cycle costing, treating the costs and timings as a stochastic process. If any subjectivity is introduced into the estimates, then the uncertainty cannot be handled using the probability theory alone. The theory of fuzzy sets is a valuable tool for handling such uncertainties. In this Special Issue, a collection of 11 contributions provide an updated overview of the approaches for estimating the life cycle cost of buildings.


Book
The logician and the engineer : how George Boole and Claude Shannon created the information age
Author:
ISBN: 1283578786 9786613891235 1400844657 9781400844654 9780691151007 0691151008 9781283578783 9781400899616 1400899613 Year: 2012 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Boolean algebra, also called Boolean logic, is at the heart of the electronic circuitry in everything we use-from our computers and cars, to home appliances. How did a system of mathematics established in the Victorian era become the basis for such incredible technological achievements a century later? In The Logician and the Engineer, Paul Nahin combines engaging problems and a colorful historical narrative to tell the remarkable story of how two men in different eras-mathematician and philosopher George Boole and electrical engineer and pioneering information theorist Claude Shannon-advanced Boolean logic and became founding fathers of the electronic communications age. Nahin takes readers from fundamental concepts to a deeper and more sophisticated understanding of modern digital machines, in order to explore computing and its possible limitations in the twenty-first century and beyond.


Book
Probabilistic and Fuzzy Approaches for Estimating the Life Cycle Costs of Buildings
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Life cycle cost (LCC) method makes it possible for the whole life performance of buildings and other structures to be optimized. The introduction of the idea of thinking in terms of a building life cycle resulted in the need to use appropriate tools and techniques for assessing and analyzing costs throughout the life cycle of the building. Traditionally, estimates of LCC have been calculated based on historical analysis of data and have used deterministic models. The concepts of probability theory can also be applied to life cycle costing, treating the costs and timings as a stochastic process. If any subjectivity is introduced into the estimates, then the uncertainty cannot be handled using the probability theory alone. The theory of fuzzy sets is a valuable tool for handling such uncertainties. In this Special Issue, a collection of 11 contributions provide an updated overview of the approaches for estimating the life cycle cost of buildings.


Book
Probabilistic and Fuzzy Approaches for Estimating the Life Cycle Costs of Buildings
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Life cycle cost (LCC) method makes it possible for the whole life performance of buildings and other structures to be optimized. The introduction of the idea of thinking in terms of a building life cycle resulted in the need to use appropriate tools and techniques for assessing and analyzing costs throughout the life cycle of the building. Traditionally, estimates of LCC have been calculated based on historical analysis of data and have used deterministic models. The concepts of probability theory can also be applied to life cycle costing, treating the costs and timings as a stochastic process. If any subjectivity is introduced into the estimates, then the uncertainty cannot be handled using the probability theory alone. The theory of fuzzy sets is a valuable tool for handling such uncertainties. In this Special Issue, a collection of 11 contributions provide an updated overview of the approaches for estimating the life cycle cost of buildings.


Book
The Master Equation and the Convergence Problem in Mean Field Games : (AMS-201)
Authors: --- ---
ISBN: 0691193711 Year: 2019 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population. While originating in economics, this theory now has applications in areas as diverse as mathematical finance, crowd phenomena, epidemiology, and cybersecurity.Because mean field games concern the interactions of infinitely many players in an optimal control framework, one expects them to appear as the limit for Nash equilibria of differential games with finitely many players, as the number of players tends to infinity. This book rigorously establishes this convergence, which has been an open problem until now. The limit of the system associated with differential games with finitely many players is described by the so-called master equation, a nonlocal transport equation in the space of measures. After defining a suitable notion of differentiability in the space of measures, the authors provide a complete self-contained analysis of the master equation. Their analysis includes the case of common noise problems in which all the players are affected by a common Brownian motion. They then go on to explain how to use the master equation to prove the mean field limit.This groundbreaking book presents two important new results in mean field games that contribute to a unified theoretical framework for this exciting and fast-developing area of mathematics.

Keywords

Convergence. --- Mean field theory. --- Many-body problem --- Statistical mechanics --- Functions --- A priori estimate. --- Approximation. --- Bellman equation. --- Boltzmann equation. --- Boundary value problem. --- C0. --- Chain rule. --- Compact space. --- Computation. --- Conditional probability distribution. --- Continuous function. --- Convergence problem. --- Convex set. --- Cooperative game. --- Corollary. --- Decision-making. --- Derivative. --- Deterministic system. --- Differentiable function. --- Directional derivative. --- Discrete time and continuous time. --- Discretization. --- Dynamic programming. --- Emergence. --- Empirical distribution function. --- Equation. --- Estimation. --- Euclidean space. --- Folk theorem (game theory). --- Folk theorem. --- Heat equation. --- Hermitian adjoint. --- Implementation. --- Initial condition. --- Integer. --- Large numbers. --- Linearization. --- Lipschitz continuity. --- Lp space. --- Macroeconomic model. --- Markov process. --- Martingale (probability theory). --- Master equation. --- Mathematical optimization. --- Maximum principle. --- Method of characteristics. --- Metric space. --- Monograph. --- Monotonic function. --- Nash equilibrium. --- Neumann boundary condition. --- Nonlinear system. --- Notation. --- Numerical analysis. --- Optimal control. --- Parameter. --- Partial differential equation. --- Periodic boundary conditions. --- Porous medium. --- Probability measure. --- Probability theory. --- Probability. --- Random function. --- Random variable. --- Randomization. --- Rate of convergence. --- Regime. --- Scientific notation. --- Semigroup. --- Simultaneous equations. --- Small number. --- Smoothness. --- Space form. --- State space. --- State variable. --- Stochastic calculus. --- Stochastic control. --- Stochastic process. --- Stochastic. --- Subset. --- Suggestion. --- Symmetric function. --- Technology. --- Theorem. --- Theory. --- Time consistency. --- Time derivative. --- Uniqueness. --- Variable (mathematics). --- Vector space. --- Viscosity solution. --- Wasserstein metric. --- Weak solution. --- Wiener process. --- Without loss of generality.


Book
Remote Sensing in Hydrology and Water Resources Management
Authors: --- --- --- --- --- et al.
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Water resources are the most valuable resources of sustainable socio-economic development, which is significantly affected by climate change and human activities. Water resources assessment is an urgent need for implementation of the perfect water resources management, but it is difficult to accurately evaluate the quantity and quality of water resources, especially in arid regions and high-altitude regions with sparse gauged data. This book hosts 24 papers devoted to remote sensing in hydrology and water resources management, which summarizes the recent advancement in remote sensing technology for hydrology analysis such as satellite remote sensing for water resources management, water quality monitoring and evaluation using remote sensing data, remote sensing for detecting the global impact of climate extremes, the use of remote sensing data for improved calibration of hydrological models, and so on. In general, the book will contribute to promote the application of remote sensing technology in water resources.

Keywords

Research & information: general --- precipitation datasets --- evaluation --- spatial scale --- temporal scale --- climate --- Yellow River Basin --- data assimilation --- WRF --- WRFDA --- 3DVar --- water levels --- surface areas --- volume variations --- hypsometry --- bathymetry --- lakes --- reservoirs --- remote sensing --- DAHITI --- modified strahler approach --- airborne LiDAR --- DEM --- flood inundation --- flood map --- flood model --- LiDAR --- terrestrial LiDAR --- evapotranspiration --- variability --- uncertainty --- unmanned aerial system --- sUAS --- multispectral --- viticulture --- water resources management --- California --- lake --- Tibetan Plateau --- hydrological changes --- water balance --- Chindwin basin --- hydrological modelling --- multi-variable calibration --- satellite-based rainfall product --- TRMM --- temporal resolution --- rainfall erosivity --- combined approach --- multi-objective optimization --- modeling uncertainty --- model constraint --- SWAT --- semiarid area --- hydrological variations --- normalized difference vegetation index --- total water storage change --- groundwater change --- extreme precipitation --- estimation --- TMPA 3B42-V7 --- regional frequency analysis --- China --- satellite datasets --- accuracy evaluation --- hydrological applicability --- Bosten Lake Basin --- actual evapotranspiration --- available water resources --- climate change --- vegetation greening --- VIP-RS model --- Lancang-Mekong river basin --- MSWEP --- AgMERRA --- APHRODITE --- CHIRPS --- PERSIANN --- error correction --- agricultural water management --- crop water consumption --- remote sensing model --- evapotranspiration allocation --- inland water --- IWCT --- Tianjin --- Landsat data --- Tarim River Basin --- desert-oasis ecotone --- land-use change --- CA-Markov model --- remote sensing in hydrology --- precipitation --- performance evaluation --- GPM --- Poyang Lake --- Yangtze River --- assimilation --- nonparametric modeling --- multi-source --- n/a --- landscape pattern --- spatiotemporal changes --- influencing factors --- watershed --- China SE --- satellite data --- LUE-GPP --- SPEI --- copula function --- conditional probability --- soil moisture --- neural network --- downscaling --- microwave data --- MODIS data


Book
Remote Sensing in Hydrology and Water Resources Management
Authors: --- --- --- --- --- et al.
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Water resources are the most valuable resources of sustainable socio-economic development, which is significantly affected by climate change and human activities. Water resources assessment is an urgent need for implementation of the perfect water resources management, but it is difficult to accurately evaluate the quantity and quality of water resources, especially in arid regions and high-altitude regions with sparse gauged data. This book hosts 24 papers devoted to remote sensing in hydrology and water resources management, which summarizes the recent advancement in remote sensing technology for hydrology analysis such as satellite remote sensing for water resources management, water quality monitoring and evaluation using remote sensing data, remote sensing for detecting the global impact of climate extremes, the use of remote sensing data for improved calibration of hydrological models, and so on. In general, the book will contribute to promote the application of remote sensing technology in water resources.

Keywords

precipitation datasets --- evaluation --- spatial scale --- temporal scale --- climate --- Yellow River Basin --- data assimilation --- WRF --- WRFDA --- 3DVar --- water levels --- surface areas --- volume variations --- hypsometry --- bathymetry --- lakes --- reservoirs --- remote sensing --- DAHITI --- modified strahler approach --- airborne LiDAR --- DEM --- flood inundation --- flood map --- flood model --- LiDAR --- terrestrial LiDAR --- evapotranspiration --- variability --- uncertainty --- unmanned aerial system --- sUAS --- multispectral --- viticulture --- water resources management --- California --- lake --- Tibetan Plateau --- hydrological changes --- water balance --- Chindwin basin --- hydrological modelling --- multi-variable calibration --- satellite-based rainfall product --- TRMM --- temporal resolution --- rainfall erosivity --- combined approach --- multi-objective optimization --- modeling uncertainty --- model constraint --- SWAT --- semiarid area --- hydrological variations --- normalized difference vegetation index --- total water storage change --- groundwater change --- extreme precipitation --- estimation --- TMPA 3B42-V7 --- regional frequency analysis --- China --- satellite datasets --- accuracy evaluation --- hydrological applicability --- Bosten Lake Basin --- actual evapotranspiration --- available water resources --- climate change --- vegetation greening --- VIP-RS model --- Lancang-Mekong river basin --- MSWEP --- AgMERRA --- APHRODITE --- CHIRPS --- PERSIANN --- error correction --- agricultural water management --- crop water consumption --- remote sensing model --- evapotranspiration allocation --- inland water --- IWCT --- Tianjin --- Landsat data --- Tarim River Basin --- desert-oasis ecotone --- land-use change --- CA-Markov model --- remote sensing in hydrology --- precipitation --- performance evaluation --- GPM --- Poyang Lake --- Yangtze River --- assimilation --- nonparametric modeling --- multi-source --- n/a --- landscape pattern --- spatiotemporal changes --- influencing factors --- watershed --- China SE --- satellite data --- LUE-GPP --- SPEI --- copula function --- conditional probability --- soil moisture --- neural network --- downscaling --- microwave data --- MODIS data


Book
Remote Sensing in Hydrology and Water Resources Management
Authors: --- --- --- --- --- et al.
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Water resources are the most valuable resources of sustainable socio-economic development, which is significantly affected by climate change and human activities. Water resources assessment is an urgent need for implementation of the perfect water resources management, but it is difficult to accurately evaluate the quantity and quality of water resources, especially in arid regions and high-altitude regions with sparse gauged data. This book hosts 24 papers devoted to remote sensing in hydrology and water resources management, which summarizes the recent advancement in remote sensing technology for hydrology analysis such as satellite remote sensing for water resources management, water quality monitoring and evaluation using remote sensing data, remote sensing for detecting the global impact of climate extremes, the use of remote sensing data for improved calibration of hydrological models, and so on. In general, the book will contribute to promote the application of remote sensing technology in water resources.

Keywords

Research & information: general --- precipitation datasets --- evaluation --- spatial scale --- temporal scale --- climate --- Yellow River Basin --- data assimilation --- WRF --- WRFDA --- 3DVar --- water levels --- surface areas --- volume variations --- hypsometry --- bathymetry --- lakes --- reservoirs --- remote sensing --- DAHITI --- modified strahler approach --- airborne LiDAR --- DEM --- flood inundation --- flood map --- flood model --- LiDAR --- terrestrial LiDAR --- evapotranspiration --- variability --- uncertainty --- unmanned aerial system --- sUAS --- multispectral --- viticulture --- water resources management --- California --- lake --- Tibetan Plateau --- hydrological changes --- water balance --- Chindwin basin --- hydrological modelling --- multi-variable calibration --- satellite-based rainfall product --- TRMM --- temporal resolution --- rainfall erosivity --- combined approach --- multi-objective optimization --- modeling uncertainty --- model constraint --- SWAT --- semiarid area --- hydrological variations --- normalized difference vegetation index --- total water storage change --- groundwater change --- extreme precipitation --- estimation --- TMPA 3B42-V7 --- regional frequency analysis --- China --- satellite datasets --- accuracy evaluation --- hydrological applicability --- Bosten Lake Basin --- actual evapotranspiration --- available water resources --- climate change --- vegetation greening --- VIP-RS model --- Lancang-Mekong river basin --- MSWEP --- AgMERRA --- APHRODITE --- CHIRPS --- PERSIANN --- error correction --- agricultural water management --- crop water consumption --- remote sensing model --- evapotranspiration allocation --- inland water --- IWCT --- Tianjin --- Landsat data --- Tarim River Basin --- desert-oasis ecotone --- land-use change --- CA-Markov model --- remote sensing in hydrology --- precipitation --- performance evaluation --- GPM --- Poyang Lake --- Yangtze River --- assimilation --- nonparametric modeling --- multi-source --- landscape pattern --- spatiotemporal changes --- influencing factors --- watershed --- China SE --- satellite data --- LUE-GPP --- SPEI --- copula function --- conditional probability --- soil moisture --- neural network --- downscaling --- microwave data --- MODIS data

Listing 1 - 8 of 8
Sort by