Narrow your search
Listing 1 - 8 of 8
Sort by

Book
Hopf Algebras, Quantum Groups and Yang-Baxter Equations
Author:
ISBN: 3038973254 3038973246 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Yang-Baxter equation first appeared in theoretical physics, in a paper by the Nobel laureate C.N. Yang and in the work of R.J. Baxter in the field of Statistical Mechanics. At the 1990 International Mathematics Congress, Vladimir Drinfeld, Vaughan F. R. Jones, and Edward Witten were awarded Fields Medals for their work related to the Yang-Baxter equation. It turned out that this equation is one of the basic equations in mathematical physics; more precisely, it is used for introducing the theory of quantum groups. It also plays a crucial role in: knot theory, braided categories, the analysis of integrable systems, non-commutative descent theory, quantum computing, non-commutative geometry, etc. Many scientists have used the axioms of various algebraic structures (quasi-triangular Hopf algebras, Yetter-Drinfeld categories, quandles, group actions, Lie (super)algebras, brace structures, (co)algebra structures, Jordan triples, Boolean algebras, relations on sets, etc.) or computer calculations (and Grobner bases) in order to produce solutions for the Yang-Baxter equation. However, the full classification of its solutions remains an open problem. At present, the study of solutions of the Yang-Baxter equation attracts the attention of a broad circle of scientists. The current volume highlights various aspects of the Yang-Baxter equation, related algebraic structures, and applications.


Book
Office hours with a geometric group theorist
Authors: ---
Year: 2017 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Geometric group theory is the study of the interplay between groups and the spaces they act on, and has its roots in the works of Henri Poincaré, Felix Klein, J.H.C. Whitehead, and Max Dehn. Office Hours with a Geometric Group Theorist brings together leading experts who provide one-on-one instruction on key topics in this exciting and relatively new field of mathematics. It's like having office hours with your most trusted math professors.An essential primer for undergraduates making the leap to graduate work, the book begins with free groups-actions of free groups on trees, algorithmic questions about free groups, the ping-pong lemma, and automorphisms of free groups. It goes on to cover several large-scale geometric invariants of groups, including quasi-isometry groups, Dehn functions, Gromov hyperbolicity, and asymptotic dimension. It also delves into important examples of groups, such as Coxeter groups, Thompson's groups, right-angled Artin groups, lamplighter groups, mapping class groups, and braid groups. The tone is conversational throughout, and the instruction is driven by examples.Accessible to students who have taken a first course in abstract algebra, Office Hours with a Geometric Group Theorist also features numerous exercises and in-depth projects designed to engage readers and provide jumping-off points for research projects.

Keywords

Geometric group theory. --- "ient. --- 4-valent tree. --- Cantor set. --- Cayley 2-complex. --- Cayley graph. --- Coxeter group. --- DSV method. --- Dehn function. --- Dehn twist. --- Euclidean space. --- Farey complex. --- Farey graph. --- Farey tree. --- Gromov hyperbolicity. --- Klein's criterion. --- Milnor-Schwarz lemma. --- Möbius transformation. --- Nielsen-Schreier Subgroup theorem. --- Perron-Frobenius theorem. --- Riemannian manifold. --- Schottky lemma. --- Thompson's group. --- asymptotic dimension. --- automorphism group. --- automorphism. --- bi-Lipschitz equivalence. --- braid group. --- braids. --- coarse isometry. --- combinatorics. --- compact orientable surface. --- cone type. --- configuration space. --- context-free grammar. --- curvature. --- dead end. --- distortion. --- endomorphism. --- finite group. --- folding. --- formal language. --- free abelian group. --- free action. --- free expansion. --- free group. --- free nonabelian group. --- free reduction. --- generators. --- geometric group theory. --- geometric object. --- geometric space. --- graph. --- group action. --- group element. --- group ends. --- group growth. --- group presentation. --- group theory. --- group. --- homeomorphism. --- homomorphism. --- hyperbolic geometry. --- hyperbolic group. --- hyperbolic space. --- hyperbolicity. --- hyperplane arrangements. --- index. --- infinite graph. --- infinite group. --- integers. --- isoperimetric problem. --- isoperimetry. --- jigsaw puzzle. --- knot theory. --- lamplighter group. --- manifold. --- mapping class group. --- mathematics. --- membership problem. --- metric space. --- non-free action. --- normal subgroup. --- path metric. --- ping-pong lemma. --- ping-pong. --- polynomial growth theorem. --- product. --- punctured disks. --- quasi-isometric equivalence. --- quasi-isometric rigidity. --- quasi-isometry group. --- quasi-isometry invariant. --- quasi-isometry. --- reflection group. --- reflection. --- relators. --- residual finiteness. --- right-angled Artin group. --- robotics. --- semidirect product. --- space. --- surface group. --- surface. --- symmetric group. --- symmetry. --- topological model. --- topology. --- train track. --- tree. --- word length. --- word metric. --- word problem. --- "ient. --- 4-valent tree. --- Cantor set. --- Cayley 2-complex. --- Cayley graph. --- Coxeter group. --- DSV method. --- Dehn function. --- Dehn twist. --- Euclidean space. --- Farey complex. --- Farey graph. --- Farey tree. --- Gromov hyperbolicity. --- Klein's criterion. --- Milnor-Schwarz lemma. --- Möbius transformation. --- Nielsen-Schreier Subgroup theorem. --- Perron-Frobenius theorem. --- Riemannian manifold. --- Schottky lemma. --- Thompson's group. --- asymptotic dimension. --- automorphism group. --- automorphism. --- bi-Lipschitz equivalence. --- braid group. --- braids. --- coarse isometry. --- combinatorics. --- compact orientable surface. --- cone type. --- configuration space. --- context-free grammar. --- curvature. --- dead end. --- distortion. --- endomorphism. --- finite group. --- folding. --- formal language. --- free abelian group. --- free action. --- free expansion. --- free group. --- free nonabelian group. --- free reduction. --- generators. --- geometric group theory. --- geometric object. --- geometric space. --- graph. --- group action. --- group element. --- group ends. --- group growth. --- group presentation. --- group theory. --- group. --- homeomorphism. --- homomorphism. --- hyperbolic geometry. --- hyperbolic group. --- hyperbolic space. --- hyperbolicity. --- hyperplane arrangements. --- index. --- infinite graph. --- infinite group. --- integers. --- isoperimetric problem. --- isoperimetry. --- jigsaw puzzle. --- knot theory. --- lamplighter group. --- manifold. --- mapping class group. --- mathematics. --- membership problem. --- metric space. --- non-free action. --- normal subgroup. --- path metric. --- ping-pong lemma. --- ping-pong. --- polynomial growth theorem. --- product. --- punctured disks. --- quasi-isometric equivalence. --- quasi-isometric rigidity. --- quasi-isometry group. --- quasi-isometry invariant. --- quasi-isometry. --- reflection group. --- reflection. --- relators. --- residual finiteness. --- right-angled Artin group. --- robotics. --- semidirect product. --- space. --- surface group. --- surface. --- symmetric group. --- symmetry. --- topological model. --- topology. --- train track. --- tree. --- word length. --- word metric. --- word problem.

On knots
Author:
ISBN: 0691084343 0691084351 1400882133 9780691084343 Year: 1987 Volume: 115 Publisher: Princeton, N.J.

Loading...
Export citation

Choose an application

Bookmark

Abstract

On Knots is a journey through the theory of knots, starting from the simplest combinatorial ideas--ideas arising from the representation of weaving patterns. From this beginning, topological invariants are constructed directly: first linking numbers, then the Conway polynomial and skein theory. This paves the way for later discussion of the recently discovered Jones and generalized polynomials. The central chapter, Chapter Six, is a miscellany of topics and recreations. Here the reader will find the quaternions and the belt trick, a devilish rope trick, Alhambra mosaics, Fibonacci trees, the topology of DNA, and the author's geometric interpretation of the generalized Jones Polynomial.Then come branched covering spaces, the Alexander polynomial, signature theorems, the work of Casson and Gordon on slice knots, and a chapter on knots and algebraic singularities.The book concludes with an appendix about generalized polynomials.

Keywords

Knot theory --- Knots (Topology) --- Low-dimensional topology --- Knot theory. --- Algebraic topology --- 3-sphere. --- Addition theorem. --- Addition. --- Alexander polynomial. --- Algebraic variety. --- Algorithm. --- Ambient isotopy. --- Arf invariant. --- Basepoint. --- Bijection. --- Bilinear form. --- Borromean rings. --- Bracket polynomial. --- Braid group. --- Branched covering. --- Chiral knot. --- Chromatic polynomial. --- Cobordism. --- Codimension. --- Combination. --- Combinatorics. --- Complex analysis. --- Concentric. --- Conjecture. --- Connected sum. --- Conway polynomial (finite fields). --- Counting. --- Covering space. --- Cyclic group. --- Dense set. --- Determinant. --- Diagram (category theory). --- Diffeomorphism. --- Dimension. --- Disjoint union. --- Disk (mathematics). --- Dual graph. --- Elementary algebra. --- Embedding. --- Enumeration. --- Existential quantification. --- Exotic sphere. --- Fibration. --- Formal power series. --- Fundamental group. --- Geometric topology. --- Geometry and topology. --- Geometry. --- Group action. --- Homotopy. --- Integer. --- Intersection form (4-manifold). --- Isolated singularity. --- Jones polynomial. --- Knot complement. --- Knot group. --- Laws of Form. --- Lens space. --- Linking number. --- Manifold. --- Module (mathematics). --- Morwen Thistlethwaite. --- Normal bundle. --- Notation. --- Obstruction theory. --- Operator algebra. --- Pairing. --- Parity (mathematics). --- Partition function (mathematics). --- Planar graph. --- Point at infinity. --- Polynomial ring. --- Polynomial. --- Quantity. --- Rectangle. --- Reidemeister move. --- Remainder. --- Root of unity. --- Saddle point. --- Seifert surface. --- Singularity theory. --- Slice knot. --- Special case. --- Statistical mechanics. --- Substructure. --- Summation. --- Symmetry. --- Theorem. --- Three-dimensional space (mathematics). --- Topological space. --- Torus knot. --- Trefoil knot. --- Tubular neighborhood. --- Underpinning. --- Unknot. --- Variable (mathematics). --- Whitehead link. --- Wild knot. --- Writhe. --- Variétés topologiques --- Topologie combinatoire --- Theorie des noeuds

Braids, links, and mapping class groups
Authors: ---
ISBN: 0691081492 1400881420 9780691081496 Year: 1975 Volume: 82 Publisher: Princeton, N. J.

Loading...
Export citation

Choose an application

Bookmark

Abstract

The central theme of this study is Artin's braid group and the many ways that the notion of a braid has proved to be important in low-dimensional topology.In Chapter 1 the author is concerned with the concept of a braid as a group of motions of points in a manifold. She studies structural and algebraic properties of the braid groups of two manifolds, and derives systems of defining relations for the braid groups of the plane and sphere. In Chapter 2 she focuses on the connections between the classical braid group and the classical knot problem. After reviewing basic results she proceeds to an exploration of some possible implications of the Garside and Markov theorems.Chapter 3 offers discussion of matrix representations of the free group and of subgroups of the automorphism group of the free group. These ideas come to a focus in the difficult open question of whether Burau's matrix representation of the braid group is faithful. Chapter 4 is a broad view of recent results on the connections between braid groups and mapping class groups of surfaces. Chapter 5 contains a brief discussion of the theory of "plats." Research problems are included in an appendix.

Keywords

Braid theory --- Braids, Theory of --- Theory of braids --- Braid theory. --- Algebraic topology --- Knot theory --- Representations of groups --- 512.54 --- Group representation (Mathematics) --- Groups, Representation theory of --- Group theory --- Knots (Topology) --- Low-dimensional topology --- 512.54 Groups. Group theory --- Groups. Group theory --- Knot theory. --- Representations of groups. --- Addition. --- Alexander polynomial. --- Algebraic structure. --- Automorphism. --- Ball (mathematics). --- Bijection. --- Braid group. --- Branched covering. --- Burau representation. --- Calculation. --- Cartesian coordinate system. --- Characterization (mathematics). --- Coefficient. --- Combinatorial group theory. --- Commutative property. --- Commutator subgroup. --- Configuration space. --- Conjugacy class. --- Corollary. --- Covering space. --- Dehn twist. --- Determinant. --- Diagram (category theory). --- Dimension. --- Disjoint union. --- Double coset. --- Eigenvalues and eigenvectors. --- Enumeration. --- Equation. --- Equivalence class. --- Exact sequence. --- Existential quantification. --- Faithful representation. --- Finite set. --- Free abelian group. --- Free group. --- Fundamental group. --- Geometry. --- Group (mathematics). --- Group ring. --- Groupoid. --- Handlebody. --- Heegaard splitting. --- Homeomorphism. --- Homomorphism. --- Homotopy group. --- Homotopy. --- Identity element. --- Identity matrix. --- Inclusion map. --- Initial point. --- Integer matrix. --- Integer. --- Knot polynomial. --- Lens space. --- Line segment. --- Line–line intersection. --- Link group. --- Low-dimensional topology. --- Mapping class group. --- Mathematical induction. --- Mathematics. --- Matrix group. --- Matrix representation. --- Monograph. --- Morphism. --- Natural transformation. --- Normal matrix. --- Notation. --- Orientability. --- Parity (mathematics). --- Permutation. --- Piecewise linear. --- Pointwise. --- Polynomial. --- Prime knot. --- Projection (mathematics). --- Proportionality (mathematics). --- Quotient group. --- Requirement. --- Rewriting. --- Riemann surface. --- Semigroup. --- Sequence. --- Special case. --- Subgroup. --- Submanifold. --- Subset. --- Symmetric group. --- Theorem. --- Theory. --- Topology. --- Trefoil knot. --- Two-dimensional space. --- Unimodular matrix. --- Unit vector. --- Variable (mathematics). --- Word problem (mathematics). --- Topologie algébrique


Book
A Primer on Mapping Class Groups (PMS-49)
Authors: ---
ISBN: 1283227436 9786613227430 1400839041 9781400839049 9781283227438 9780691147949 0691147949 Year: 2011 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

"The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students.The book begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichm©oller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification"--Provided by publisher.

Keywords

Mappings (Mathematics) --- Class groups (Mathematics) --- Groups, Class (Mathematics) --- Algebraic number theory --- Commutative rings --- Ideals (Algebra) --- Maps (Mathematics) --- Functions --- Functions, Continuous --- Topology --- Transformations (Mathematics) --- 3-manifold theory. --- Alexander method. --- Birman exact sequence. --- BirmanЈilden theorem. --- Dehn twists. --- DehnЌickorish theorem. --- DehnЎielsenЂaer theorem. --- Dennis Johnson. --- Euler class. --- FenchelЎielsen coordinates. --- Gervais presentation. --- Grtzsch's problem. --- Johnson homomorphism. --- Markov partitions. --- Meyer signature cocycle. --- Mod(S). --- Nielsen realization theorem. --- NielsenДhurston classification theorem. --- NielsenДhurston classification. --- Riemann surface. --- Teichmller mapping. --- Teichmller metric. --- Teichmller space. --- Thurston compactification. --- Torelli group. --- Wajnryb presentation. --- algebraic integers. --- algebraic intersection number. --- algebraic relations. --- algebraic structure. --- annulus. --- aspherical manifold. --- bigon criterion. --- braid group. --- branched cover. --- capping homomorphism. --- classifying space. --- closed surface. --- collar lemma. --- compactness criterion. --- complex of curves. --- configuration space. --- conjugacy class. --- coordinates principle. --- cutting homomorphism. --- cyclic subgroup. --- diffeomorphism. --- disk. --- existence theorem. --- extended mapping class group. --- finite index. --- finite subgroup. --- finite-order homeomorphism. --- finite-order mapping class. --- first homology group. --- geodesic laminations. --- geometric classification. --- geometric group theory. --- geometric intersection number. --- geometric operation. --- geometry. --- harmonic maps. --- holomorphic quadratic differential. --- homeomorphism. --- homological criterion. --- homotopy. --- hyperbolic geometry. --- hyperbolic plane. --- hyperbolic structure. --- hyperbolic surface. --- inclusion homomorphism. --- infinity. --- intersection number. --- isotopy. --- lantern relation. --- low-dimensional homology. --- mapping class group. --- mapping torus. --- measured foliation space. --- measured foliations. --- metric geometry. --- moduli space. --- orbifold. --- orbit. --- outer automorphism group. --- pseudo-Anosov homeomorphism. --- punctured disk. --- quasi-isometry. --- quasiconformal map. --- second homology group. --- simple closed curve. --- simplicial complex. --- stretch factors. --- surface bundles. --- surface homeomorphism. --- surface. --- symplectic representation. --- topology. --- torsion. --- torus. --- train track.


Book
What's next? : the mathematical legacy of William P. Thurston
Author:
ISBN: 0691185891 Year: 2020 Publisher: Princeton, New Jersey ; Oxford : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

William Thurston (1946–2012) was one of the great mathematicians of the twentieth century. He was a visionary whose extraordinary ideas revolutionized a broad range of mathematical fields, from foliations, contact structures, and Teichmüller theory to automorphisms of surfaces, hyperbolic geometry, geometrization of 3-manifolds, geometric group theory, and rational maps. In addition, he discovered connections between disciplines that led to astonishing breakthroughs in mathematical understanding as well as the creation of entirely new fields. His far-reaching questions and conjectures led to enormous progress by other researchers. What's Next? brings together many of today's leading mathematicians to describe recent advances and future directions inspired by Thurston's transformative ideas.Including valuable insights from his colleagues and former students, What's Next? discusses Thurston's fundamental contributions to topology, geometry, and dynamical systems and includes many deep and original contributions to the field. This incisive and wide-ranging book also explores how he introduced new ways of thinking about and doing mathematics, innovations that have had a profound and lasting impact on the mathematical community as a whole.

Keywords

Dynamics. --- Geometry. --- Topology. --- MATHEMATICS / General. --- Analysis situs --- Position analysis --- Rubber-sheet geometry --- Geometry --- Polyhedra --- Set theory --- Algebras, Linear --- Mathematics --- Euclid's Elements --- Dynamical systems --- Kinetics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Thurston, William P., --- Thurston, W. P. --- Arbitrarily large. --- Asymptotic expansion. --- Automorphism. --- Big O notation. --- Braid group. --- Branch point. --- Central series. --- Character variety. --- Characterization (mathematics). --- Cohomology operation. --- Cohomology. --- Commutative property. --- Conjecture. --- Conjugacy class. --- Convex hull. --- Covering space. --- Coxeter group. --- Curvature. --- Dehn's lemma. --- Diagram (category theory). --- Disjoint union. --- Eigenfunction. --- Endomorphism. --- Epimorphism. --- Equivalence class. --- Equivalence relation. --- Euclidean space. --- Extreme point. --- Faithful representation. --- Fiber bundle. --- Free group. --- Free product. --- Fundamental group. --- Geometrization conjecture. --- HNN extension. --- Haar measure. --- Homeomorphism. --- Homotopy. --- Hyperbolic 3-manifold. --- Hyperbolic geometry. --- Hyperbolic manifold. --- Hyperbolic space. --- Hypercube. --- I0. --- Inclusion map. --- Incompressible surface. --- JSJ decomposition. --- Jordan curve theorem. --- Julia set. --- Klein bottle. --- Kleinian group. --- Lebesgue measure. --- Leech lattice. --- Limit point. --- Lyapunov exponent. --- Mahler measure. --- Manifold decomposition. --- Mapping cylinder. --- Marriage theorem. --- Maxima and minima. --- Moduli space. --- Möbius strip. --- Möbius transformation. --- Natural topology. --- Non-Euclidean geometry. --- Non-positive curvature. --- Normal subgroup. --- Open set. --- Orientability. --- Pair of pants (mathematics). --- Perfect group. --- Pleated surface. --- Polynomial. --- Preorder. --- Probability measure. --- Pullback (category theory). --- Pullback (differential geometry). --- Quadric. --- Quasi-isometry. --- Quasiconvex function. --- Rectangle. --- Riemann surface. --- Riemannian manifold. --- Saddle point. --- Sectional curvature. --- Sign (mathematics). --- Simple algebra. --- Simply connected space. --- Special case. --- Subgroup. --- Subset. --- Symplectic geometry. --- Theorem. --- Total order. --- Unit disk. --- Unit sphere. --- Upper and lower bounds. --- Vector bundle.


Book
Knots, Groups and 3-Manifolds (AM-84), Volume 84 : Papers Dedicated to the Memory of R.H. Fox. (AM-84)

Loading...
Export citation

Choose an application

Bookmark

Abstract

There is a sympathy of ideas among the fields of knot theory, infinite discrete group theory, and the topology of 3-manifolds. This book contains fifteen papers in which new results are proved in all three of these fields. These papers are dedicated to the memory of Ralph H. Fox, one of the world's leading topologists, by colleagues, former students, and friends.In knot theory, papers have been contributed by Goldsmith, Levine, Lomonaco, Perko, Trotter, and Whitten. Of these several are devoted to the study of branched covering spaces over knots and links, while others utilize the braid groups of Artin.Cossey and Smythe, Stallings, and Strasser address themselves to group theory. In his contribution Stallings describes the calculation of the groups In/In+1 where I is the augmentation ideal in a group ring RG. As a consequence, one has for each k an example of a k-generator l-relator group with no free homomorphs. In the third part, papers by Birman, Cappell, Milnor, Montesinos, Papakyriakopoulos, and Shalen comprise the treatment of 3-manifolds. Milnor gives, besides important new results, an exposition of certain aspects of our current knowledge regarding the 3- dimensional Brieskorn manifolds.

Keywords

Knot theory. --- Group theory. --- Three-manifolds (Topology) --- 3-manifold. --- 3-sphere. --- Additive group. --- Alexander duality. --- Algebraic equation. --- Algebraic surface. --- Algebraic variety. --- Automorphic form. --- Automorphism. --- Big O notation. --- Bilinear form. --- Borromean rings. --- Boundary (topology). --- Braid group. --- Cartesian product. --- Central series. --- Chain rule. --- Characteristic polynomial. --- Coefficient. --- Cohomological dimension. --- Commutative ring. --- Commutator subgroup. --- Complex Lie group. --- Complex coordinate space. --- Complex manifold. --- Complex number. --- Conjugacy class. --- Connected sum. --- Coprime integers. --- Coset. --- Counterexample. --- Cyclic group. --- Dedekind domain. --- Diagram (category theory). --- Diffeomorphism. --- Disjoint union. --- Divisibility rule. --- Double coset. --- Equation. --- Equivalence class. --- Euler characteristic. --- Fiber bundle. --- Finite group. --- Fundamental group. --- Generating set of a group. --- Graded ring. --- Graph product. --- Group ring. --- Groupoid. --- Heegaard splitting. --- Holomorphic function. --- Homeomorphism. --- Homological algebra. --- Homology (mathematics). --- Homology sphere. --- Homomorphism. --- Homotopy group. --- Homotopy sphere. --- Homotopy. --- Hurewicz theorem. --- Infimum and supremum. --- Integer matrix. --- Integer. --- Intersection number (graph theory). --- Intersection theory. --- Knot group. --- Knot polynomial. --- Loop space. --- Main diagonal. --- Manifold. --- Mapping cylinder. --- Mathematical induction. --- Meromorphic function. --- Monodromy. --- Monomorphism. --- Multiplicative group. --- Permutation. --- Poincaré conjecture. --- Principal ideal domain. --- Proportionality (mathematics). --- Quotient space (topology). --- Riemann sphere. --- Riemann surface. --- Seifert fiber space. --- Simplicial category. --- Special case. --- Spectral sequence. --- Subgroup. --- Submanifold. --- Surjective function. --- Symmetric group. --- Symplectic matrix. --- Theorem. --- Three-dimensional space (mathematics). --- Topology. --- Torus knot. --- Triangle group. --- Variable (mathematics). --- Weak equivalence (homotopy theory).


Book
Office hours with a geometric group theorist
Authors: ---
Year: 2017 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Geometric group theory is the study of the interplay between groups and the spaces they act on, and has its roots in the works of Henri Poincaré, Felix Klein, J.H.C. Whitehead, and Max Dehn. Office Hours with a Geometric Group Theorist brings together leading experts who provide one-on-one instruction on key topics in this exciting and relatively new field of mathematics. It's like having office hours with your most trusted math professors.An essential primer for undergraduates making the leap to graduate work, the book begins with free groups-actions of free groups on trees, algorithmic questions about free groups, the ping-pong lemma, and automorphisms of free groups. It goes on to cover several large-scale geometric invariants of groups, including quasi-isometry groups, Dehn functions, Gromov hyperbolicity, and asymptotic dimension. It also delves into important examples of groups, such as Coxeter groups, Thompson's groups, right-angled Artin groups, lamplighter groups, mapping class groups, and braid groups. The tone is conversational throughout, and the instruction is driven by examples.Accessible to students who have taken a first course in abstract algebra, Office Hours with a Geometric Group Theorist also features numerous exercises and in-depth projects designed to engage readers and provide jumping-off points for research projects.

Keywords

Geometric group theory. --- "ient. --- 4-valent tree. --- Cantor set. --- Cayley 2-complex. --- Cayley graph. --- Coxeter group. --- DSV method. --- Dehn function. --- Dehn twist. --- Euclidean space. --- Farey complex. --- Farey graph. --- Farey tree. --- Gromov hyperbolicity. --- Klein's criterion. --- Milnor-Schwarz lemma. --- Möbius transformation. --- Nielsen-Schreier Subgroup theorem. --- Perron-Frobenius theorem. --- Riemannian manifold. --- Schottky lemma. --- Thompson's group. --- asymptotic dimension. --- automorphism group. --- automorphism. --- bi-Lipschitz equivalence. --- braid group. --- braids. --- coarse isometry. --- combinatorics. --- compact orientable surface. --- cone type. --- configuration space. --- context-free grammar. --- curvature. --- dead end. --- distortion. --- endomorphism. --- finite group. --- folding. --- formal language. --- free abelian group. --- free action. --- free expansion. --- free group. --- free nonabelian group. --- free reduction. --- generators. --- geometric group theory. --- geometric object. --- geometric space. --- graph. --- group action. --- group element. --- group ends. --- group growth. --- group presentation. --- group theory. --- group. --- homeomorphism. --- homomorphism. --- hyperbolic geometry. --- hyperbolic group. --- hyperbolic space. --- hyperbolicity. --- hyperplane arrangements. --- index. --- infinite graph. --- infinite group. --- integers. --- isoperimetric problem. --- isoperimetry. --- jigsaw puzzle. --- knot theory. --- lamplighter group. --- manifold. --- mapping class group. --- mathematics. --- membership problem. --- metric space. --- non-free action. --- normal subgroup. --- path metric. --- ping-pong lemma. --- ping-pong. --- polynomial growth theorem. --- product. --- punctured disks. --- quasi-isometric equivalence. --- quasi-isometric rigidity. --- quasi-isometry group. --- quasi-isometry invariant. --- quasi-isometry. --- reflection group. --- reflection. --- relators. --- residual finiteness. --- right-angled Artin group. --- robotics. --- semidirect product. --- space. --- surface group. --- surface. --- symmetric group. --- symmetry. --- topological model. --- topology. --- train track. --- tree. --- word length. --- word metric. --- word problem.

Listing 1 - 8 of 8
Sort by