Listing 1 - 3 of 3 |
Sort by
|
Choose an application
The theory of pseudo-differential operators (which originated as singular integral operators) was largely influenced by its application to function theory in one complex variable and regularity properties of solutions of elliptic partial differential equations. Given here is an exposition of some new classes of pseudo-differential operators relevant to several complex variables and certain non-elliptic problems.Originally published in 1979.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
517.982.4 --- Pseudodifferential operators --- Operators, Pseudodifferential --- Pseudo-differential operators --- Theory of generalized functions (distributions) --- Pseudodifferential operators. --- 517.982.4 Theory of generalized functions (distributions) --- Operator theory --- Differential equations, Partial --- Équations aux dérivées partielles --- Opérateurs pseudo-différentiels --- Addition. --- Adjoint. --- Approximation. --- Asymptotic expansion. --- Banach space. --- Bounded operator. --- Boundedness. --- Calculation. --- Change of variables. --- Coefficient. --- Compact space. --- Complex analysis. --- Computation. --- Corollary. --- Cotangent bundle. --- Derivative. --- Differential operator. --- Disjoint union. --- Elliptic partial differential equation. --- Estimation. --- Euclidean distance. --- Euclidean vector. --- Existential quantification. --- Fourier integral operator. --- Fourier transform. --- Geometric series. --- Heat equation. --- Heisenberg group. --- Homogeneous distribution. --- Infimum and supremum. --- Integer. --- Integration by parts. --- Intermediate value theorem. --- Jacobian matrix and determinant. --- Left inverse. --- Linear combination. --- Linear map. --- Mean value theorem. --- Monograph. --- Monomial. --- Nilpotent group. --- Operator (physics). --- Operator norm. --- Order of magnitude. --- Orthogonal complement. --- Parametrix. --- Parity (mathematics). --- Partition of unity. --- Polynomial. --- Projection (linear algebra). --- Pseudo-differential operator. --- Quadratic function. --- Regularity theorem. --- Remainder. --- Requirement. --- Right inverse. --- Scientific notation. --- Self-reference. --- Several complex variables. --- Singular integral. --- Smoothness. --- Sobolev space. --- Special case. --- Submanifold. --- Subset. --- Sum of squares. --- Summation. --- Support (mathematics). --- Tangent space. --- Taylor's theorem. --- Theorem. --- Theory. --- Transpose. --- Triangle inequality. --- Uniform boundedness. --- Upper and lower bounds. --- Variable (mathematics). --- Without loss of generality. --- Zero set. --- Équations aux dérivées partielles --- Opérateurs pseudo-différentiels
Choose an application
This book develops a general analysis and synthesis framework for impulsive and hybrid dynamical systems. Such a framework is imperative for modern complex engineering systems that involve interacting continuous-time and discrete-time dynamics with multiple modes of operation that place stringent demands on controller design and require implementation of increasing complexity--whether advanced high-performance tactical fighter aircraft and space vehicles, variable-cycle gas turbine engines, or air and ground transportation systems. Impulsive and Hybrid Dynamical Systems goes beyond similar treatments by developing invariant set stability theorems, partial stability, Lagrange stability, boundedness, ultimate boundedness, dissipativity theory, vector dissipativity theory, energy-based hybrid control, optimal control, disturbance rejection control, and robust control for nonlinear impulsive and hybrid dynamical systems. A major contribution to mathematical system theory and control system theory, this book is written from a system-theoretic point of view with the highest standards of exposition and rigor. It is intended for graduate students, researchers, and practitioners of engineering and applied mathematics as well as computer scientists, physicists, and other scientists who seek a fundamental understanding of the rich dynamical behavior of impulsive and hybrid dynamical systems.
Automatic control. --- Control theory. --- Dynamics. --- Discrete-time systems. --- Dynamical systems --- Kinetics --- Mathematics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Dynamics --- Machine theory --- Control engineering --- Control equipment --- Control theory --- Engineering instruments --- Automation --- Programmable controllers --- DES (System analysis) --- Discrete event systems --- Sampled-data systems --- Digital control systems --- Discrete mathematics --- System analysis --- Linear time invariant systems --- Actuator. --- Adaptive control. --- Algorithm. --- Amplitude. --- Analog computer. --- Arbitrarily large. --- Asymptote. --- Asymptotic analysis. --- Axiom. --- Balance equation. --- Bode plot. --- Boundedness. --- Calculation. --- Center of mass (relativistic). --- Coefficient of restitution. --- Continuous function. --- Convex set. --- Differentiable function. --- Differential equation. --- Dissipation. --- Dissipative system. --- Dynamical system. --- Dynamical systems theory. --- Energy. --- Equations of motion. --- Equilibrium point. --- Escapement. --- Euler–Lagrange equation. --- Exponential stability. --- Forms of energy. --- Hamiltonian mechanics. --- Hamiltonian system. --- Hermitian matrix. --- Hooke's law. --- Hybrid system. --- Identity matrix. --- Inequality (mathematics). --- Infimum and supremum. --- Initial condition. --- Instability. --- Interconnection. --- Invariance theorem. --- Isolated system. --- Iterative method. --- Jacobian matrix and determinant. --- Lagrangian (field theory). --- Lagrangian system. --- Lagrangian. --- Likelihood-ratio test. --- Limit cycle. --- Limit set. --- Linear function. --- Linearization. --- Lipschitz continuity. --- Lyapunov function. --- Lyapunov stability. --- Mass balance. --- Mathematical optimization. --- Melting. --- Mixture. --- Moment of inertia. --- Momentum. --- Monotonic function. --- Negative feedback. --- Nonlinear programming. --- Nonlinear system. --- Nonnegative matrix. --- Optimal control. --- Ordinary differential equation. --- Orthant. --- Parameter. --- Partial differential equation. --- Passive dynamics. --- Poincaré conjecture. --- Potential energy. --- Proof mass. --- Quantity. --- Rate function. --- Requirement. --- Robust control. --- Second law of thermodynamics. --- Semi-infinite. --- Small-gain theorem. --- Special case. --- Spectral radius. --- Stability theory. --- State space. --- Stiffness. --- Supply (economics). --- Telecommunication. --- Theorem. --- Transpose. --- Uncertainty. --- Uniform boundedness. --- Uniqueness. --- Vector field. --- Vibration. --- Zeroth (software). --- Zeroth law of thermodynamics.
Choose an application
Kenneth Brakke studies in general dimensions a dynamic system of surfaces of no inertial mass driven by the force of surface tension and opposed by a frictional force proportional to velocity. He formulates his study in terms of varifold surfaces and uses the methods of geometric measure theory to develop a mathematical description of the motion of a surface by its mean curvature. This mathematical description encompasses, among other subtleties, those of changing geometries and instantaneous mass losses.Originally published in 1978.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Geometric measure theory. --- Surfaces. --- Curvature. --- Measure theory --- Calculus --- Curves --- Surfaces --- Curved surfaces --- Geometry --- Shapes --- Affine transformation. --- Approximation. --- Asymptote. --- Barrier function. --- Besicovitch covering theorem. --- Big O notation. --- Bounded set (topological vector space). --- Boundedness. --- Calculation. --- Cauchy–Schwarz inequality. --- Characteristic function (probability theory). --- Compactness theorem. --- Completing the square. --- Concave function. --- Convex set. --- Convolution. --- Crystal structure. --- Curve. --- Derivative. --- Diameter. --- Differentiable function. --- Differentiable manifold. --- Differential geometry. --- Dimension. --- Domain of a function. --- Dyadic rational. --- Equivalence relation. --- Estimation. --- Euclidean space. --- Existential quantification. --- Exterior (topology). --- First variation. --- Gaussian curvature. --- Geometry. --- Grain boundary. --- Graph of a function. --- Grassmannian. --- Harmonic function. --- Hausdorff measure. --- Heat equation. --- Heat kernel. --- Heat transfer. --- Homotopy. --- Hypersurface. --- Hölder's inequality. --- Infimum and supremum. --- Initial condition. --- Lebesgue measure. --- Lebesgue point. --- Linear space (geometry). --- Lipschitz continuity. --- Mean curvature. --- Melting point. --- Microstructure. --- Monotonic function. --- Natural number. --- Nonparametric statistics. --- Order of integration (calculus). --- Order of integration. --- Order of magnitude. --- Parabolic partial differential equation. --- Paraboloid. --- Partial differential equation. --- Permutation. --- Perpendicular. --- Pointwise. --- Probability. --- Quantity. --- Quotient space (topology). --- Radon measure. --- Regularity theorem. --- Retract. --- Rewriting. --- Riemannian manifold. --- Right angle. --- Second derivative. --- Sectional curvature. --- Semi-continuity. --- Smoothness. --- Subsequence. --- Subset. --- Support (mathematics). --- Tangent space. --- Taylor's theorem. --- Theorem. --- Theory. --- Topology. --- Total curvature. --- Translational symmetry. --- Uniform boundedness. --- Unit circle. --- Unit vector. --- Upper and lower bounds. --- Variable (mathematics). --- Varifold. --- Vector field. --- Weight function. --- Without loss of generality.
Listing 1 - 3 of 3 |
Sort by
|