Listing 1 - 9 of 9 |
Sort by
|
Choose an application
Reverse transcriptase. --- Reverse transcriptase --- Revertase --- RNA-dependent DNA polymerase --- RNA-directed DNA polymerase --- DNA polymerases
Choose an application
The human genome, as with the genome of most organisms, is comprised of various types of mobile genetic element derived repeats. Mobile genetic elements that mobilize by an RNA intermediate, include both autonomous and non-autonomous retrotransposons, and mobilize by a “copy and paste” mechanism that relies of the presence of a functional reverse transcriptase activity. The extent to which these different types of elements are actively mobilizing varies among organisms, as revealed with the advent of Next Generation DNA sequencing (NGS).To understand the normal and aberrant mechanisms that impact the mobility of these elements requires a more extensive understanding of how these elements interact with molecular pathways of the cell, including DNA repair, recombination and chromatin. In addition, epigenetic based-mechanisms can also influence the mobility of these elements, likely by transcriptional activation or repression in certain cell types. Studies regarding how mobile genetic elements interface and evolve with these pathways will rely on genomic studies from various model organisms. In addition, the mechanistic details of how these elements are regulated will continue to be elucidated with the use of genetic, biochemical, molecular, cellular, and bioinformatic approaches. Remarkably, the current understanding regarding the biology of these elements in the human genome, suggests these elements may impact developmental biology, including cellular differentiation, neuronal development, and immune function. Thus, aberrant changes in these molecular pathways may also impact disease, including neuronal degeneration, autoimmunity, and cancer.
transposon --- genome stability --- model organisms --- reverse transcriptase --- Mobile DNA --- RNA-dependent DNA polymerase --- cellular differentiation --- retrotransposon --- DNA repair
Choose an application
The human genome, as with the genome of most organisms, is comprised of various types of mobile genetic element derived repeats. Mobile genetic elements that mobilize by an RNA intermediate, include both autonomous and non-autonomous retrotransposons, and mobilize by a “copy and paste” mechanism that relies of the presence of a functional reverse transcriptase activity. The extent to which these different types of elements are actively mobilizing varies among organisms, as revealed with the advent of Next Generation DNA sequencing (NGS).To understand the normal and aberrant mechanisms that impact the mobility of these elements requires a more extensive understanding of how these elements interact with molecular pathways of the cell, including DNA repair, recombination and chromatin. In addition, epigenetic based-mechanisms can also influence the mobility of these elements, likely by transcriptional activation or repression in certain cell types. Studies regarding how mobile genetic elements interface and evolve with these pathways will rely on genomic studies from various model organisms. In addition, the mechanistic details of how these elements are regulated will continue to be elucidated with the use of genetic, biochemical, molecular, cellular, and bioinformatic approaches. Remarkably, the current understanding regarding the biology of these elements in the human genome, suggests these elements may impact developmental biology, including cellular differentiation, neuronal development, and immune function. Thus, aberrant changes in these molecular pathways may also impact disease, including neuronal degeneration, autoimmunity, and cancer.
transposon --- genome stability --- model organisms --- reverse transcriptase --- Mobile DNA --- RNA-dependent DNA polymerase --- cellular differentiation --- retrotransposon --- DNA repair
Choose an application
The human genome, as with the genome of most organisms, is comprised of various types of mobile genetic element derived repeats. Mobile genetic elements that mobilize by an RNA intermediate, include both autonomous and non-autonomous retrotransposons, and mobilize by a “copy and paste” mechanism that relies of the presence of a functional reverse transcriptase activity. The extent to which these different types of elements are actively mobilizing varies among organisms, as revealed with the advent of Next Generation DNA sequencing (NGS).To understand the normal and aberrant mechanisms that impact the mobility of these elements requires a more extensive understanding of how these elements interact with molecular pathways of the cell, including DNA repair, recombination and chromatin. In addition, epigenetic based-mechanisms can also influence the mobility of these elements, likely by transcriptional activation or repression in certain cell types. Studies regarding how mobile genetic elements interface and evolve with these pathways will rely on genomic studies from various model organisms. In addition, the mechanistic details of how these elements are regulated will continue to be elucidated with the use of genetic, biochemical, molecular, cellular, and bioinformatic approaches. Remarkably, the current understanding regarding the biology of these elements in the human genome, suggests these elements may impact developmental biology, including cellular differentiation, neuronal development, and immune function. Thus, aberrant changes in these molecular pathways may also impact disease, including neuronal degeneration, autoimmunity, and cancer.
transposon --- genome stability --- model organisms --- reverse transcriptase --- Mobile DNA --- RNA-dependent DNA polymerase --- cellular differentiation --- retrotransposon --- DNA repair
Choose an application
PROCEDURE PENALE --- BELGIQUE --- JUGE D'INSTRUCTION --- MODES D'INVESTIGATION --- COMPARAISON D'ADN --- 577.215 --- 343.14 <493> --- 577.3 --- 343.14 <493> Strafrechtelijk bewijs. Bewijsvoering in strafzaken. Ondervraging van verdachte. Bekentenis. Eed. Getuigenverklaring. Expertise--België --- Strafrechtelijk bewijs. Bewijsvoering in strafzaken. Ondervraging van verdachte. Bekentenis. Eed. Getuigenverklaring. Expertise--België --- 577.215 Inverse transcription. Synthesis of DNA on RNA template. RNA-dependent DNA-polymerase (inverse transcriptase) --- Inverse transcription. Synthesis of DNA on RNA template. RNA-dependent DNA-polymerase (inverse transcriptase) --- Strafrechtelijk bewijs. Bewijsvoering in strafzaken. Ondervraging van verdachte. Bekentenis. Eed. Getuigenverklaring. Expertise--België --- Criminology. Victimology --- Criminal law. Criminal procedure --- gerechtelijk onderzoek --- strafrecht --- criminologie --- DNA (deoxyribonucleic acid) --- Belgium
Choose an application
Enquête criminelle --- --ADN --- --Criminalistique --- Enquêtes criminelles --- 343.14 --- Strafrechtelijk bewijs. Bewijsvoering in strafzaken. Ondervraging van verdachte. Bekentenis. Eed. Getuigenverklaring. Expertise --- 343.14 Strafrechtelijk bewijs. Bewijsvoering in strafzaken. Ondervraging van verdachte. Bekentenis. Eed. Getuigenverklaring. Expertise --- 17 --- BPB0806 --- 342.721 --- 577.215 --- 577.215 Inverse transcription. Synthesis of DNA on RNA template. RNA-dependent DNA-polymerase (inverse transcriptase) --- Inverse transcription. Synthesis of DNA on RNA template. RNA-dependent DNA-polymerase (inverse transcriptase) --- 342.721 Persoonlijke vrijheid. Privacy. Wetgeving i.v.m. transplantatie van organen --- Persoonlijke vrijheid. Privacy. Wetgeving i.v.m. transplantatie van organen --- 17 Filosofische ethiek --- Filosofische ethiek --- --DNA fingerprinting --- Forensic sciences --- Criminal investigation --- Empreintes génétiques --- Criminalistique --- Enquêtes criminelles --- DNA fingerprinting --- Criminal investigation. --- 17 Moral philosophy. Ethics. Practical philosophy --- Moral philosophy. Ethics. Practical philosophy --- Procédure pénale --- ADN --- Adn --- Empreintes génétiques
Choose an application
Despite significant pharmacological advances, the backbone of the most highly active antiretroviral therapy regimens for controlling HIV/AIDS is still a combination of reverse transcriptase inhibitors (RTIs) first discovered in the late 1980s. In Reverse Transcriptase Inhibitors in HIV/AIDS Therapy, leading experts in AIDS/HIV drug discovery and development review all aspects of RTIs (nucleosides, nucleotides, and non-nucleosides), including drug discovery, pharmacology, development of drug resistance, toxicity, and prevention of mother-to-child transmission of HIV/AIDS. The authors synthesize our current understanding of the role of reverse transcriptase in the viral life cycle, describe the discovery and development of eight nucleoside and nucleotide analogs that represent milestones in treatment history, and thoroughly discuss the question of toxicity and resistance to this class of drugs. They also address three non-nucleoside RTIs and their pharmacokinetics and comparative clinical efficacy, new RTIs currently under development, and the impact of approved agents on treatment in general, and on vertical transmission in the developing world. Highlights include a thorough discussion of side effects, resistance, and treatment in the third world. Comprehensive and up-to-date, Reverse Transcriptase Inhibitors in HIIV/AIDS Therapy offers a magisterial survey of the discovery, clinical development, current use, and future possibilities of all drugs that treat HIV/AIDS by inhibiting the viral reverse transcriptase.
AIDS (Disease) --- HIV infections --- Reverse transcriptase --- Antiretroviral agents. --- Chemotherapy. --- Inhibitors --- Therapeutic use. --- Anti-retroviral agents --- Antiretroviral drugs --- Antiretrovirals --- Antiviral agents --- Revertase --- RNA-dependent DNA polymerase --- RNA-directed DNA polymerase --- DNA polymerases --- HIV (Viruses) infections --- HTLV-III infections --- HTLV-III-LAV infections --- Human T-lymphotropic virus III infections --- Lentivirus infections --- Sexually transmitted diseases --- Emerging infectious diseases. --- Infectious Diseases. --- Emerging infections --- New infectious diseases --- Re-emerging infectious diseases --- Reemerging infectious diseases --- Communicable diseases --- Infectious diseases.
Choose an application
Nu het menselijk genoom in kaart is gebracht kunnen wetenschappers beginnen denken aan praktische toepassingen en de gevolgen daarvan: het bepalen van erfelijke ziekten, behandeling van erfelijke defecten, ontwikkeling van nieuwe geneesmiddelen, … Naast een beter inzicht in de materie, worden we echter meer en meer geconfronteerd met de (ethische) gevolgen van de nieuwe inzichten in de genetica. In dit boek proberen de auteurs de kloof te dichten tussen wat wetenschappers nu weten en wat de gewone burger meent dat men nu weet of kan. Om de vele medische termen lichter verteerbaar te maken, werd de informatie in een verhaal gegoten. We volgen de levensloop van Arend Soog en doorlopen met hem in tien hoofdstukken de complexe wereld van de genetica. Eerst maken we kennis met de standaardbegrippen zoals chromosomen, DNA en eiwitten. Arend heeft dan wel een reeks genen met zijn broer gemeen, het verschil tussen beiden in gestalte, gewicht, karakter, etc. is meer dan duidelijk. Daarna komt Arend te weten dat mutaties niet ongewoon zijn, dat genetisch onderzoek de origine en de verspreiding van de mens kan reconstrueren en hoe en wanneer erfelijke aandoeningen tot stand komen. Ons personage ontdekt ook dat genetische tests voor allerlei erfelijke aandoeningen meer en meer courant worden, en ook andere concrete vragen komen aan bod: zal hij de kanker van z’n ouders erven, hoe kan stamceltherapie redding brengen voor een groot aantal ziekten, is intelligentie overerfbaar, ... De laatste twee hoofdstukken gaan dieper in op patiëntenrechten en de ethica van genetica, waarbij we de lijdensweg volgen van Arend na een banaal verkeersongeval. Niet alleen loopt hij een resistente ‘ziekenhuisbacterie’ op, doorheen de revalidatie ontwikkelt hij een overbelasting en ontsteking van de gewrichten. Na een tijdje zijn z’n vingers en polsen onbruikbaar, is de linkerknie een gevaarlijk abces en de rechterknie gezwollen. Arend ondergaat de ene test na de andere en hij ervaart dat deze (genetische) tests ook voor verzekeringsagenten en rechtbanken van belang zijn. De patiëntenrechtenwet, het recht van weten, het recht van niet weten en het recht op privacy worden in het boek aan de hand van dit voorbeeld glashelder uit de doeken gedaan. In het slothoofdstuk trachten de auteurs de ethische grenzen van de genetica voorzichtig af te bakenen. Bij het behandelen en verbeteren van genetische aandoeningen maken de auteurs een dubbel onderscheid: “op welke cellen is de genetische interventie gericht en wat is het doel?” Het herstellen of corrigeren van erfelijke defecten in organen zoals bv. de lever kan volgens de auteurs geen moreel bezwaar geven. Anders wordt het wanneer men op het niveau van de geslachtscellen of de totipotente cellen van een heel jong embryo ingrijpt, omdat deze ‘verbetering’ oa tot sociale discriminatie zou kunnen leiden. De auteurs pleiten in dit (geladen) debat dan ook voor een "genuanceerd en adequaat taalgebruik" Het boek biedt een bijna volledige staalkaart van de huidige genetica; nieuwe inzichten komen nauwelijks aan bod maar dat was niet de bedoeling van de auteurs. Ondanks het werk van wetenschapsjournalist Wim Daems om genetica te populariseren blijven enkele hoofdstukken zwaar om te lezen en is het verhaal van Arend Soog iets te mager om echt helemaal te overtuigen. Toch blijft het een degelijk boek dat de impact van genetica op het dagelijks leven duidelijk maakt.
Erfelijkheidsleer. --- Human genetics --- patiëntenrechten --- genetica --- Professional ethics. Deontology --- medische ethiek --- Medical law --- gentherapie --- HTML (hypertext markup language) --- Molecular biology --- moleculaire biologie --- 577.215 --- 575.113.1 --- BPB0601 --- 600.2 --- DNA --- erfelijkheidsleer --- genen --- klonen --- Arend --- Chromosomen --- Ethiek --- Genen --- Genetica --- Genmutaties --- Gentherapie --- Hersenen --- Kanker --- Mensenrechten --- Stamceltherapie --- #gsdbP --- 575.113.1 Inheritance information. Nature of gene. Genetic code --- Inheritance information. Nature of gene. Genetic code --- 577.215 Inverse transcription. Synthesis of DNA on RNA template. RNA-dependent DNA-polymerase (inverse transcriptase) --- Inverse transcription. Synthesis of DNA on RNA template. RNA-dependent DNA-polymerase (inverse transcriptase) --- Erfelijkheidsleer --- #GBIB:CBMER --- #GGSB: Antropologie --- #GGSB: Bio-ethiek --- #GGSB: Sociale wet. essays --- Academic collection --- C3 --- erfelijkheid --- ethiek --- menselijk lichaam (x) --- 094 Biologie --- 575.1 --- 575.82 --- 577.1 --- 577.21 --- 579.6 --- DNA deoxyribonucleic acid --- RNA ribonucleic acid --- bio-ethiek --- biologie --- chromosomen --- genetische manipulatie --- kankergenen --- microbiologie --- mutaties --- populatiegenetica --- proteïnen --- recombinant DNA --- stamceltherapie --- Erfelijkheid (genetica) --- 599.2 --- 600.9 --- Erfelijkheid --- Gentechnologie --- biotechnologie --- erfelijke ziekten --- ethiek (moraal) --- genetisch advies --- patiëntenrecht --- stamcellen --- Kunst en cultuur --- Erfelijkheid. Overerving --- .chemische basis van leven. biochemie en bio-organische chemie in het algemeen --- toegepaste microbiologie --- Gedrag --- patiëntenrechten --- proteïnen --- patiëntenrecht --- Onderzoek --- Ontwikkeling --- Leerlijn --- Antropologie --- Bio-ethiek --- Sociale wet. essays
Choose an application
Forensic genetics --- Génétique légale --- Technique --- 577.215 --- 343.14 --- ADN --- Preuve --- Inverse transcription. Synthesis of DNA on RNA template. RNA-dependent DNA-polymerase (inverse transcriptase) --- Strafrechtelijk bewijs. Bewijsvoering in strafzaken. Ondervraging van verdachte. Bekentenis. Eed. Getuigenverklaring. Expertise --- DNA --- Bewijs --- genetics --- legal proof --- 343.14 Strafrechtelijk bewijs. Bewijsvoering in strafzaken. Ondervraging van verdachte. Bekentenis. Eed. Getuigenverklaring. Expertise --- 577.215 Inverse transcription. Synthesis of DNA on RNA template. RNA-dependent DNA-polymerase (inverse transcriptase) --- Génétique légale --- доказ --- bewijs --- dowód --- proof --- правно доказателство --- evidenza --- probă judiciară --- důkaz --- dôkaz --- απόδειξη --- prova --- Rechtsbeweis --- pierādīšana --- todiste --- prueba --- dokaz --- tõend --- bevis --- provë --- bizonyíték --- įrodymas --- bevisbörda --- Beweis --- товар на докажување --- dužnost dokazivanja --- βάρος της απόδειξης --- утврдување вистинитост --- pierādīšanas līdzekļi --- carga de la prueba --- inversión de la carga de la prueba --- ónus da prova --- факт --- teret dokaza --- pienākums pierādīt --- bizonyítási teher --- tõendamiskohustus --- bizonyítási teher megfordulása --- судски доказ --- dôkazné bremeno --- obligația de a depune mărturie --- onere della prova --- barrë e provës --- Beweislast --- onus of proof --- důkazní břemeno --- todistustaakka --- pierādīšanas pienākums --- bevisbyrde --- onus --- charge de la preuve --- įrodinėjimo pareiga --- bewijslast --- DNR --- DNS --- dna --- ДНК --- DNK --- dezoksiribonukleīnskābe --- Desoxyribonucleinsäure --- desoksüribonukleiinhape --- RNK --- acid deoksiribonukleik --- deoxyribonukleová kyselina --- deoksiribonukleiinihappo --- dezoxyribonokleová kyselina --- acid deoxiribonucleic --- ácido desoxirribonucleico --- δεσοξυριβοζονουκλεϊνικό οξύ --- acide désoxyribonucléique --- дезоксирибонуклеинова киселина --- deoxyribonucleic acid --- deoksiribonukleino rūgštis --- desoxyribonucleïnezuur --- aigéad dí-ocsairibeanúicléasach --- deoksiribonukleinska kiselina --- acido desossiribonucleico --- deoxiribonukleinsyra --- dezoksiribonukleinska kiselina --- ribonukleová kyselina --- RNA --- дезоксирибонуклеинска киселина --- Kwas dezoksyrybonukleinowy --- dezoxiribonukleinsav --- deoxyribonukleinsyre --- cruthúnas
Listing 1 - 9 of 9 |
Sort by
|