Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Current automotive radar sensors prove to be a weather robust and low-cost solution, but are suffering from low resolution and are not capable of classifying detected targets. However, for future applications like autonomous driving, such features are becoming ever increasingly important. On the basis of successful state-of-the-art applications, this work presents the first in-depth analysis and ground-breaking, novel results of polarimetric millimeter wave radars for automotive applications.
Machine-Learning --- Millimeter-Wave Radar --- Automotive Radar --- Polarimetric Radar --- Target Classification --- Polarimetrie --- Millimeterwellen-Radar --- Objekterkennung --- KI --- Automotive-Radar
Choose an application
Twelve edited original papers on the latest and state-of-art results of topics ranging from calibration, validation, and science to a wide range of applications using ALOS-2/PALSAR-2. We hope you will find them useful for your future research.
Technology: general issues --- History of engineering & technology --- Environmental science, engineering & technology --- Sentinel-1 --- ALOS/PALSAR-2 --- land subsidence --- accuracy assessment --- Alexandria City --- Egypt --- local climate zone --- random forest --- feature importance --- land surface temperature --- grid cells --- Sentinel-2 --- PALSAR-2 --- ASTER --- soil moisture --- ALOS-2 --- GA-BP --- water cloud model --- L-band --- SAR --- backscattering --- soil moisture content --- LAI --- HH and HV polarization --- flood --- NoBADI --- Florida --- Hurricane Irma --- synthetic aperture radar --- polarimetric radar --- co-polarized phase difference --- radar scattering --- vegetation --- radar applications --- agriculture --- leaf area index --- leave-one-out cross-validation --- oil palm --- radar vegetation index --- vegetation descriptors --- ecosystem carbon cycle --- L-band SAR --- vegetation index --- random forest regression --- plantation --- permafrost --- InSAR --- Qinghai-Tibet Plateau --- ALOS --- thermal melting collapse --- Sentinel-1A --- SBAS-InSAR --- heavy forest area --- potential landslide identification --- SAR-based landslide detection --- Growing Split-Based Approach (GSBA) --- Hokkaido landslide --- Putanpunas landslide --- SAR polarimetry --- model-free 3-component decomposition for full polarimetric data (MF3CF) --- radar polarimetry --- calibration --- Faraday rotation
Choose an application
Precipitation is a well-recognized pillar in the global water and energy balances. The accurate and timely understanding of its characteristics at the global, regional and local scales is indispensable for a clearer insight on the mechanisms underlying the Earth’s atmosphere-ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises the primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne. This volume hosts original research contributions on several aspects of remote sensing of precipitation, including applications which embrace the use of remote sensing in tackling issues such as precipitation estimation, seasonal characteristics of precipitation and frequency analysis, assessment of satellite precipitation products, storm prediction, rain microphysics and microstructure, and the comparison of satellite and numerical weather prediction precipitation products.
Northern China --- raindrop size distribution (DSD) --- microphysical processes --- quantitative precipitation estimation (QPE) --- satellite-based precipitation --- elevation --- extreme events --- IMERG-V05B and V06A --- MSWEP --- ERA5 --- SM2RAIN --- precipitation estimation --- soil moisture --- SM2RAIN-CCI --- SM2RAIN-ASCAT --- multi-satellite precipitation analysis (TMPA) --- error decomposition --- complex topography --- diverse climate --- gauge data --- IMERG --- TAHMO --- morphing --- field displacement --- TIGGE --- precipitation --- numerical weather prediction --- satellite --- flood --- spring 2019 --- Iran --- GPM IMERG --- satellite precipitation --- spatiotemporal analysis --- statistical distribution --- validation --- Mainland China --- GSMaP_NRT --- GSMaP_Gauge_NRT --- raindrop size distribution --- radar reflectivity --- raindrop spectrometer --- semi-arid area --- assessment --- Taiwan --- data assimilation --- WRF model --- high-impact rainfall events --- GNSS ZTD --- optimum interpolation --- geographically weighted regression --- downscaling --- Tianshan Mountains --- satellite precipitation products --- evaluation --- daily rainfall --- hourly rainfall --- GPM --- TRMM --- GNSS --- GNSS antenna --- receiver antenna calibration --- relative calibration --- Phase Center Variation --- U-blox --- goGPS --- Zenith Tropospheric Delay --- ZED-F9P --- GSMaP --- Nepal --- cloud radar --- thunderstorm --- LDR --- hydrometeor --- hydrometeor classification --- lightning --- discharge --- remote sensing --- SEVIRI --- ground radar --- precipitation interpolation --- geographically and temporally weighted regression --- time weight function --- geographically and temporally weighted regression kriging --- extreme rainfall --- polarimetric radar signatures --- quantitative precipitation estimation --- southern china --- reanalysis --- linear trends --- mainland China --- EDBF algorithm --- geospatial predictor --- spatial pattern --- weighted precipitation --- Cyprus --- bias correction --- object-based method --- storm events --- Thies --- disdrometer --- weather circulations --- convective --- stratiform --- rain spectra --- radar reflectivity–rain rate relationship --- gridded precipitation products --- abrupt changes --- trends --- statistical indicators --- agriculture --- Pakistan --- rainfall --- radar --- extreme precipitation --- spatial bootstrap --- Louisiana --- annual maxima --- n/a --- radar reflectivity-rain rate relationship
Choose an application
Precipitation is a well-recognized pillar in the global water and energy balances. The accurate and timely understanding of its characteristics at the global, regional and local scales is indispensable for a clearer insight on the mechanisms underlying the Earth’s atmosphere-ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises the primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne. This volume hosts original research contributions on several aspects of remote sensing of precipitation, including applications which embrace the use of remote sensing in tackling issues such as precipitation estimation, seasonal characteristics of precipitation and frequency analysis, assessment of satellite precipitation products, storm prediction, rain microphysics and microstructure, and the comparison of satellite and numerical weather prediction precipitation products.
Research & information: general --- Northern China --- raindrop size distribution (DSD) --- microphysical processes --- quantitative precipitation estimation (QPE) --- satellite-based precipitation --- elevation --- extreme events --- IMERG-V05B and V06A --- MSWEP --- ERA5 --- SM2RAIN --- precipitation estimation --- soil moisture --- SM2RAIN-CCI --- SM2RAIN-ASCAT --- multi-satellite precipitation analysis (TMPA) --- error decomposition --- complex topography --- diverse climate --- gauge data --- IMERG --- TAHMO --- morphing --- field displacement --- TIGGE --- precipitation --- numerical weather prediction --- satellite --- flood --- spring 2019 --- Iran --- GPM IMERG --- satellite precipitation --- spatiotemporal analysis --- statistical distribution --- validation --- Mainland China --- GSMaP_NRT --- GSMaP_Gauge_NRT --- raindrop size distribution --- radar reflectivity --- raindrop spectrometer --- semi-arid area --- assessment --- Taiwan --- data assimilation --- WRF model --- high-impact rainfall events --- GNSS ZTD --- optimum interpolation --- geographically weighted regression --- downscaling --- Tianshan Mountains --- satellite precipitation products --- evaluation --- daily rainfall --- hourly rainfall --- GPM --- TRMM --- GNSS --- GNSS antenna --- receiver antenna calibration --- relative calibration --- Phase Center Variation --- U-blox --- goGPS --- Zenith Tropospheric Delay --- ZED-F9P --- GSMaP --- Nepal --- cloud radar --- thunderstorm --- LDR --- hydrometeor --- hydrometeor classification --- lightning --- discharge --- remote sensing --- SEVIRI --- ground radar --- precipitation interpolation --- geographically and temporally weighted regression --- time weight function --- geographically and temporally weighted regression kriging --- extreme rainfall --- polarimetric radar signatures --- quantitative precipitation estimation --- southern china --- reanalysis --- linear trends --- mainland China --- EDBF algorithm --- geospatial predictor --- spatial pattern --- weighted precipitation --- Cyprus --- bias correction --- object-based method --- storm events --- Thies --- disdrometer --- weather circulations --- convective --- stratiform --- rain spectra --- radar reflectivity-rain rate relationship --- gridded precipitation products --- abrupt changes --- trends --- statistical indicators --- agriculture --- Pakistan --- rainfall --- radar --- extreme precipitation --- spatial bootstrap --- Louisiana --- annual maxima
Choose an application
Radar-related technology is mainly processed within the time and frequency domains but, at the same time, is a multi-dimensional integrated system including a spatial domain for transmitting and receiving electromagnetic waves. As a result of the enormous technological advancements of the pioneers actively discussed in this book, research and development in multi-dimensional undeveloped areas is expected to continue. This book contains state-of-the-art work that should guide your research.
History of engineering & technology --- inverse synthetic aperture ladar (ISAL) --- maneuvering target --- integral cubic phase function (ICPF) --- fractional Fourier transform (FRFT) --- non-uniform fast Fourier transform (NUFFT) --- CLEAN technique --- simultaneous polarimetric radar --- constant modulus sequences --- correlation properties --- doppler tolerance --- saliency preprocessing LLC --- saliency detection --- image processing --- scene classification --- antenna array --- automatic guided vehicle --- DoA/DoD estimation --- MIMO radar --- direct position determination --- Doppler --- Doppler rate --- maximum likelihood estimator --- coherent pulse trains --- single moving sensor --- Cramer–Rao lower bound --- bistatic MIMO radar --- DOD/DOA estimation --- mutual coupling --- off-grid sparse problem --- unmanned aerial vehicle --- clustering methods --- man-made targets --- synthetic aperture radar (SAR) --- inverse synthetic aperture radar (ISAR) --- polarimetric decomposition --- Synthetic Aperture Radar (SAR) --- microwave imaging --- constitutive parameters --- conductivity --- permittivity --- tomography --- RF MEMS --- switch --- analytical approach --- low control voltage --- high switching speed --- high reliability --- radar echo cancellation --- frequency shifting modulation --- interrupted sampling --- radar jamming --- deception jamming --- remote sensing --- SAR --- radon transform --- speckle noise filtering --- maritime traffic monitoring --- wake detection and analysis --- synthetic aperture radar --- differential SAR tomography --- squinted SAR --- 3-D deformation --- 2-D PPS --- maneuvering target detection --- coherent integration --- motion parameter estimation --- second-order phase difference (SoPD) --- time-frequency analysis --- image fusion --- sparse representation --- hyperbolic tangent function --- guided filter --- narrowband interference separation --- block sparse Bayesian learning --- sensing matrix optimization --- block coherence measure --- bistatic inverse synthetic aperture radar --- linear geometry distortion --- prior information --- least square error --- lunar penetrating radar --- local correlation --- SNR --- K-L transform --- seislet transform --- generative adversarial nets --- through-wall radar imaging --- multipath ghost suppression --- generator and discriminator --- ultrahigh resolution --- spaceborne --- curved orbit --- series reversion --- singular value decomposition (SVD) --- deramping-based approach --- crosshole ground penetrating radar (GPR) --- Bayesian inversion --- Markov chain Monte Carlo (MCMC) --- forward model --- modeling error --- discrete cosine transform (DCT) --- through-wall imaging --- contrast target detection --- clutter reduction --- entropy thresholding --- low-rank approximation --- S-transformation --- ISAR --- micro-Doppler --- synchrosqueezing --- PBR (passive bistatic radar) --- clutter suppression --- non-uniform grid --- dilation morphology --- passive bistatic radar --- phased array radar --- parameter estimation --- aircraft surveillance --- GPR --- seasonal permafrost --- electromagnetic wave attribute --- relative water content --- marine radar --- wind direction retrieval --- small wind streak --- local gradient method --- adaptive reduced method --- energy spectrum method --- metamaterial absorber --- double negative --- dual-band --- FMCW radio altimeter --- methodological error --- critical height --- altitude measurement accuracy --- height pulses --- ultra-wide frequency deviation --- sparse recovery --- wideband noise interference --- dechirping --- subspace extraction --- denoising detection --- orthogonal matching pursuit --- pulse radar --- rotating target --- micro-motion feature extraction --- interrupted transmitting and receiving (ITR) --- dual-polarized radar --- DOA estimation --- atomic norm --- comprehensive SAR --- multiparametric SAR observation --- discrete scatterer model --- n/a --- Cramer-Rao lower bound
Choose an application
Radar-related technology is mainly processed within the time and frequency domains but, at the same time, is a multi-dimensional integrated system including a spatial domain for transmitting and receiving electromagnetic waves. As a result of the enormous technological advancements of the pioneers actively discussed in this book, research and development in multi-dimensional undeveloped areas is expected to continue. This book contains state-of-the-art work that should guide your research.
inverse synthetic aperture ladar (ISAL) --- maneuvering target --- integral cubic phase function (ICPF) --- fractional Fourier transform (FRFT) --- non-uniform fast Fourier transform (NUFFT) --- CLEAN technique --- simultaneous polarimetric radar --- constant modulus sequences --- correlation properties --- doppler tolerance --- saliency preprocessing LLC --- saliency detection --- image processing --- scene classification --- antenna array --- automatic guided vehicle --- DoA/DoD estimation --- MIMO radar --- direct position determination --- Doppler --- Doppler rate --- maximum likelihood estimator --- coherent pulse trains --- single moving sensor --- Cramer–Rao lower bound --- bistatic MIMO radar --- DOD/DOA estimation --- mutual coupling --- off-grid sparse problem --- unmanned aerial vehicle --- clustering methods --- man-made targets --- synthetic aperture radar (SAR) --- inverse synthetic aperture radar (ISAR) --- polarimetric decomposition --- Synthetic Aperture Radar (SAR) --- microwave imaging --- constitutive parameters --- conductivity --- permittivity --- tomography --- RF MEMS --- switch --- analytical approach --- low control voltage --- high switching speed --- high reliability --- radar echo cancellation --- frequency shifting modulation --- interrupted sampling --- radar jamming --- deception jamming --- remote sensing --- SAR --- radon transform --- speckle noise filtering --- maritime traffic monitoring --- wake detection and analysis --- synthetic aperture radar --- differential SAR tomography --- squinted SAR --- 3-D deformation --- 2-D PPS --- maneuvering target detection --- coherent integration --- motion parameter estimation --- second-order phase difference (SoPD) --- time-frequency analysis --- image fusion --- sparse representation --- hyperbolic tangent function --- guided filter --- narrowband interference separation --- block sparse Bayesian learning --- sensing matrix optimization --- block coherence measure --- bistatic inverse synthetic aperture radar --- linear geometry distortion --- prior information --- least square error --- lunar penetrating radar --- local correlation --- SNR --- K-L transform --- seislet transform --- generative adversarial nets --- through-wall radar imaging --- multipath ghost suppression --- generator and discriminator --- ultrahigh resolution --- spaceborne --- curved orbit --- series reversion --- singular value decomposition (SVD) --- deramping-based approach --- crosshole ground penetrating radar (GPR) --- Bayesian inversion --- Markov chain Monte Carlo (MCMC) --- forward model --- modeling error --- discrete cosine transform (DCT) --- through-wall imaging --- contrast target detection --- clutter reduction --- entropy thresholding --- low-rank approximation --- S-transformation --- ISAR --- micro-Doppler --- synchrosqueezing --- PBR (passive bistatic radar) --- clutter suppression --- non-uniform grid --- dilation morphology --- passive bistatic radar --- phased array radar --- parameter estimation --- aircraft surveillance --- GPR --- seasonal permafrost --- electromagnetic wave attribute --- relative water content --- marine radar --- wind direction retrieval --- small wind streak --- local gradient method --- adaptive reduced method --- energy spectrum method --- metamaterial absorber --- double negative --- dual-band --- FMCW radio altimeter --- methodological error --- critical height --- altitude measurement accuracy --- height pulses --- ultra-wide frequency deviation --- sparse recovery --- wideband noise interference --- dechirping --- subspace extraction --- denoising detection --- orthogonal matching pursuit --- pulse radar --- rotating target --- micro-motion feature extraction --- interrupted transmitting and receiving (ITR) --- dual-polarized radar --- DOA estimation --- atomic norm --- comprehensive SAR --- multiparametric SAR observation --- discrete scatterer model --- n/a --- Cramer-Rao lower bound
Choose an application
Radar-related technology is mainly processed within the time and frequency domains but, at the same time, is a multi-dimensional integrated system including a spatial domain for transmitting and receiving electromagnetic waves. As a result of the enormous technological advancements of the pioneers actively discussed in this book, research and development in multi-dimensional undeveloped areas is expected to continue. This book contains state-of-the-art work that should guide your research.
History of engineering & technology --- inverse synthetic aperture ladar (ISAL) --- maneuvering target --- integral cubic phase function (ICPF) --- fractional Fourier transform (FRFT) --- non-uniform fast Fourier transform (NUFFT) --- CLEAN technique --- simultaneous polarimetric radar --- constant modulus sequences --- correlation properties --- doppler tolerance --- saliency preprocessing LLC --- saliency detection --- image processing --- scene classification --- antenna array --- automatic guided vehicle --- DoA/DoD estimation --- MIMO radar --- direct position determination --- Doppler --- Doppler rate --- maximum likelihood estimator --- coherent pulse trains --- single moving sensor --- Cramer-Rao lower bound --- bistatic MIMO radar --- DOD/DOA estimation --- mutual coupling --- off-grid sparse problem --- unmanned aerial vehicle --- clustering methods --- man-made targets --- synthetic aperture radar (SAR) --- inverse synthetic aperture radar (ISAR) --- polarimetric decomposition --- Synthetic Aperture Radar (SAR) --- microwave imaging --- constitutive parameters --- conductivity --- permittivity --- tomography --- RF MEMS --- switch --- analytical approach --- low control voltage --- high switching speed --- high reliability --- radar echo cancellation --- frequency shifting modulation --- interrupted sampling --- radar jamming --- deception jamming --- remote sensing --- SAR --- radon transform --- speckle noise filtering --- maritime traffic monitoring --- wake detection and analysis --- synthetic aperture radar --- differential SAR tomography --- squinted SAR --- 3-D deformation --- 2-D PPS --- maneuvering target detection --- coherent integration --- motion parameter estimation --- second-order phase difference (SoPD) --- time-frequency analysis --- image fusion --- sparse representation --- hyperbolic tangent function --- guided filter --- narrowband interference separation --- block sparse Bayesian learning --- sensing matrix optimization --- block coherence measure --- bistatic inverse synthetic aperture radar --- linear geometry distortion --- prior information --- least square error --- lunar penetrating radar --- local correlation --- SNR --- K-L transform --- seislet transform --- generative adversarial nets --- through-wall radar imaging --- multipath ghost suppression --- generator and discriminator --- ultrahigh resolution --- spaceborne --- curved orbit --- series reversion --- singular value decomposition (SVD) --- deramping-based approach --- crosshole ground penetrating radar (GPR) --- Bayesian inversion --- Markov chain Monte Carlo (MCMC) --- forward model --- modeling error --- discrete cosine transform (DCT) --- through-wall imaging --- contrast target detection --- clutter reduction --- entropy thresholding --- low-rank approximation --- S-transformation --- ISAR --- micro-Doppler --- synchrosqueezing --- PBR (passive bistatic radar) --- clutter suppression --- non-uniform grid --- dilation morphology --- passive bistatic radar --- phased array radar --- parameter estimation --- aircraft surveillance --- GPR --- seasonal permafrost --- electromagnetic wave attribute --- relative water content --- marine radar --- wind direction retrieval --- small wind streak --- local gradient method --- adaptive reduced method --- energy spectrum method --- metamaterial absorber --- double negative --- dual-band --- FMCW radio altimeter --- methodological error --- critical height --- altitude measurement accuracy --- height pulses --- ultra-wide frequency deviation --- sparse recovery --- wideband noise interference --- dechirping --- subspace extraction --- denoising detection --- orthogonal matching pursuit --- pulse radar --- rotating target --- micro-motion feature extraction --- interrupted transmitting and receiving (ITR) --- dual-polarized radar --- DOA estimation --- atomic norm --- comprehensive SAR --- multiparametric SAR observation --- discrete scatterer model
Listing 1 - 7 of 7 |
Sort by
|