Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Numerous efforts have been devoted to using biomass as a feedstock for the production of bio-based materials, biochemicals, and biofuels that reduce greenhouse gas emissions and dependence on conventional fossil resources. Conversion strategies for the production of platform chemicals, building blocks, fine chemicals, and biofuels include a wide range of processes such as chemical and mechanical pretreatment for improved carbohydrate production, fractionation of biomass into carbohydrates and lignin and their further conversions, microbial and enzymatic conversion of biomass into valuable products, and direct catalytic conversion of biomass or its components into chemicals and fuels. This Special Issue introduces recent innovative research results in the area of bioenergy and value-added chemicals from various feedstocks through chemical and biological catalytic processes.
History of engineering & technology --- biomass --- xylan --- lignin --- cellulose --- pretreatment --- solid superacid catalyst --- sulfated tin(IV) oxide --- α-pinene partial coupling --- renewable high-density fuel --- biofuel --- biorefinery --- sugar-decomposed --- enzymatic hydrolysis --- waste biomass --- kinetics --- biomass pre-treatment --- green diesel --- renewable diesel --- Ni catalyst --- hydrodeoxygenation --- Cu-promotion effect --- catalysts --- solvents
Choose an application
Numerous efforts have been devoted to using biomass as a feedstock for the production of bio-based materials, biochemicals, and biofuels that reduce greenhouse gas emissions and dependence on conventional fossil resources. Conversion strategies for the production of platform chemicals, building blocks, fine chemicals, and biofuels include a wide range of processes such as chemical and mechanical pretreatment for improved carbohydrate production, fractionation of biomass into carbohydrates and lignin and their further conversions, microbial and enzymatic conversion of biomass into valuable products, and direct catalytic conversion of biomass or its components into chemicals and fuels. This Special Issue introduces recent innovative research results in the area of bioenergy and value-added chemicals from various feedstocks through chemical and biological catalytic processes.
biomass --- xylan --- lignin --- cellulose --- pretreatment --- solid superacid catalyst --- sulfated tin(IV) oxide --- α-pinene partial coupling --- renewable high-density fuel --- biofuel --- biorefinery --- sugar-decomposed --- enzymatic hydrolysis --- waste biomass --- kinetics --- biomass pre-treatment --- green diesel --- renewable diesel --- Ni catalyst --- hydrodeoxygenation --- Cu-promotion effect --- catalysts --- solvents
Choose an application
Numerous efforts have been devoted to using biomass as a feedstock for the production of bio-based materials, biochemicals, and biofuels that reduce greenhouse gas emissions and dependence on conventional fossil resources. Conversion strategies for the production of platform chemicals, building blocks, fine chemicals, and biofuels include a wide range of processes such as chemical and mechanical pretreatment for improved carbohydrate production, fractionation of biomass into carbohydrates and lignin and their further conversions, microbial and enzymatic conversion of biomass into valuable products, and direct catalytic conversion of biomass or its components into chemicals and fuels. This Special Issue introduces recent innovative research results in the area of bioenergy and value-added chemicals from various feedstocks through chemical and biological catalytic processes.
History of engineering & technology --- biomass --- xylan --- lignin --- cellulose --- pretreatment --- solid superacid catalyst --- sulfated tin(IV) oxide --- α-pinene partial coupling --- renewable high-density fuel --- biofuel --- biorefinery --- sugar-decomposed --- enzymatic hydrolysis --- waste biomass --- kinetics --- biomass pre-treatment --- green diesel --- renewable diesel --- Ni catalyst --- hydrodeoxygenation --- Cu-promotion effect --- catalysts --- solvents
Choose an application
Developing active, selective and energy-efficient heterogeneous catalysts is of paramount importance for the production of high value-added products from energy resources in a more sustainable manner. In this Special Issue of Energies, we provide a showcase of the latest progress in the development of cleaner, more efficient processes for the conversion of these feedstocks into valuable fuels, chemicals and energy. Most of the works collected are focused on the conversion of biomass which clearly reflects the paramount importance that the biorefinery concept will play in the years to come.
Technology: general issues --- biogas --- syngas production --- DRM --- Ni catalyst --- bi-metallic catalyst --- ceria-alumina --- ceria --- glycerol --- methanol --- biodiesel --- red jujube branch --- hydrothermal carbonization --- hydrochar --- energy recovery efficiency --- solid fuel --- toluene --- steam reforming --- GHSV --- S/C ratio --- coke formation --- Mo2C catalysts --- nanostructured carbon materials --- hydrodeoxygenation of guaiacol --- carbothermal hydrogen reduction --- drop-in fuels --- biomass --- bio-oil --- pyrolysis --- spark engine --- gasoline --- levulinic acid --- γ-valerolactone --- hydrogen from water --- Zn: Ni --- sepiolite --- attapulgite --- Ru nanoparticles --- activated carbon --- one-pot hydrolytic hydrogenation --- cellulose conversion --- sorbitol
Choose an application
Developing active, selective and energy-efficient heterogeneous catalysts is of paramount importance for the production of high value-added products from energy resources in a more sustainable manner. In this Special Issue of Energies, we provide a showcase of the latest progress in the development of cleaner, more efficient processes for the conversion of these feedstocks into valuable fuels, chemicals and energy. Most of the works collected are focused on the conversion of biomass which clearly reflects the paramount importance that the biorefinery concept will play in the years to come.
biogas --- syngas production --- DRM --- Ni catalyst --- bi-metallic catalyst --- ceria-alumina --- ceria --- glycerol --- methanol --- biodiesel --- red jujube branch --- hydrothermal carbonization --- hydrochar --- energy recovery efficiency --- solid fuel --- toluene --- steam reforming --- GHSV --- S/C ratio --- coke formation --- Mo2C catalysts --- nanostructured carbon materials --- hydrodeoxygenation of guaiacol --- carbothermal hydrogen reduction --- drop-in fuels --- biomass --- bio-oil --- pyrolysis --- spark engine --- gasoline --- levulinic acid --- γ-valerolactone --- hydrogen from water --- Zn: Ni --- sepiolite --- attapulgite --- Ru nanoparticles --- activated carbon --- one-pot hydrolytic hydrogenation --- cellulose conversion --- sorbitol
Choose an application
Developing active, selective and energy-efficient heterogeneous catalysts is of paramount importance for the production of high value-added products from energy resources in a more sustainable manner. In this Special Issue of Energies, we provide a showcase of the latest progress in the development of cleaner, more efficient processes for the conversion of these feedstocks into valuable fuels, chemicals and energy. Most of the works collected are focused on the conversion of biomass which clearly reflects the paramount importance that the biorefinery concept will play in the years to come.
Technology: general issues --- biogas --- syngas production --- DRM --- Ni catalyst --- bi-metallic catalyst --- ceria-alumina --- ceria --- glycerol --- methanol --- biodiesel --- red jujube branch --- hydrothermal carbonization --- hydrochar --- energy recovery efficiency --- solid fuel --- toluene --- steam reforming --- GHSV --- S/C ratio --- coke formation --- Mo2C catalysts --- nanostructured carbon materials --- hydrodeoxygenation of guaiacol --- carbothermal hydrogen reduction --- drop-in fuels --- biomass --- bio-oil --- pyrolysis --- spark engine --- gasoline --- levulinic acid --- γ-valerolactone --- hydrogen from water --- Zn: Ni --- sepiolite --- attapulgite --- Ru nanoparticles --- activated carbon --- one-pot hydrolytic hydrogenation --- cellulose conversion --- sorbitol
Choose an application
Catalyst lifetime represents one of the most crucial economic aspects in industrial catalytic processes, due to costly shutdowns, catalyst replacements, and proper disposal of spent materials. Not surprisingly, there is considerable motivation to understand and treat catalyst deactivation, poisoning, and regeneration, which causes this research topic to continue to grow. The complexity of catalyst poisoning obviously increases along with the increasing use of biomass/waste-derived/residual feedstocks and with requirements for cleaner and novel sustainable processes. This book collects 15 research papers providing insights into several scientific and technical aspects of catalyst poisoning and deactivation, proposing more tolerant catalyst formulations, and exploring possible regeneration strategies.
cyclic operation --- n/a --- nickel catalysts --- regeneration --- Cu/SSZ-13 --- syngas --- NH3-SCR --- oxysulfate --- Ni-catalyst --- MW incinerator --- iso-octane --- hydrogenation --- dry reforming of methane --- oxysulfide --- Co-Zn/H-Beta --- Low-temperature catalyst --- Rh catalysts --- deactivation --- vanadia species --- SO2 poisoning --- vehicle emission control --- barium carbonate --- sodium ions --- sulfur deactivation --- tetragonal zirconia --- sulfur poisoning --- Liquefied natural gas --- water --- deactivation by coking --- phase stabilization --- catalyst --- NO removal --- physico-chemical characterization --- octanol --- SEM --- aluminum sulfate --- oxygen storage capacity --- unusual deactivation --- diesel --- nitrous oxide --- exhaust gas --- over-reduction --- poisoning --- catalyst deactivation --- ammonium sulfates --- CO2 reforming --- SO3 --- Rh --- in situ regeneration --- copper --- V2O5–WO3/TiO2 catalysts --- palladium sulfate --- Selective Catalytic Reduction (SCR) --- biogas --- thermal stability --- phthalic anhydride --- octanal --- natural gas --- sulfur-containing sodium salts --- washing --- coke deposition --- vanadia-titania catalyst --- CPO reactor --- homogeneous catalysis --- NOx reduction by C3H8 --- nitrogen oxides --- effect of flow rate --- DeNOx --- catalytic methane combustion --- deactivation mechanism --- TEM --- catalyst durability --- V2O5-WO3/TiO2 catalysts
Choose an application
A collection of essential research articles and scientific reviews covering some of the most pertinent and topical areas of study that currently constitute Inorganic Chemistry in the early 21st century.
Research & information: general --- Chemistry --- Inorganic chemistry --- cyanoguanidine --- silver --- crystal structure --- chemical bonding --- CuII --- pyridine amides --- pyrazine amide --- amino benzamides --- EPR spectroscopy --- lanthanides --- Schiff base --- synthetic strategies --- single-molecule magnets --- Atomic Layer Deposition --- Ni catalyst --- reforming catalyst --- thermodynamics --- metallopharmaceuticals --- cancer stem cells --- copper --- bioinorganic chemistry --- medicinal inorganic chemistry --- reactive oxygen species --- metal-carbonyl complexes --- [FeFe]-hydrogenases --- density functional theory --- time-dependent DFT --- organometallic photochemistry --- crystalline borosilicate --- actinides --- supercritical hydrothermal synthesis --- waste forms --- thorium --- rhenium --- ruthenium --- metal–metal bonds --- uranium --- ceria --- hydrothermal --- catalysis --- nanomaterials --- crystallisation --- 4,2′:6′,4″-terpyridine --- 3,2′:6′,3″-terpyridine --- coordination polymer --- isomers --- lithium --- potassium --- Nacnac --- β-diketiminate --- tricyclohexylphenyl --- steric bulk --- silver complexes --- permanganates --- perchlorates --- perrhenate --- pyridine --- structure --- spectroscopy --- thermal behavior --- heterogenous catalyst --- metal–organic framework (MOF) --- olefin epoxidation --- carbon dioxide cycloaddition --- f-element --- lanthanide --- actinide --- multidentate ligand --- macrocycle --- ammonothermal synthesis --- fluoride --- aluminum --- speciation --- equilibria --- thermodynamic stability --- peptides --- multivariate linear regression --- poisoning effect of polar monomers --- Brookhart-type catalysts --- Zintl clusters --- X-ray crystallography --- Density Functional Theory --- n/a --- metal-metal bonds --- 4,2':6',4"-terpyridine --- 3,2':6',3"-terpyridine --- metal-organic framework (MOF)
Listing 1 - 8 of 8 |
Sort by
|