Listing 1 - 10 of 7059 | << page >> |
Sort by
|
Choose an application
Topics include neural network learning, knowledge acquisition and learning, machine learning for web navigation and mining, learning through mobile data mining, text and multimedia mining through machine learning, distributed and parallel learning algorithms and applications, feature extraction and classification, theories and models for plausible reasoning, computational learning theory, cognitive modelling and hybrid learning algorithms.
Choose an application
The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such exciting new technologies as self-driving cars, speech recognition, and translation applications. This substantially revised fourth edition offers new coverage of recent advances in the field in both theory and practice, including developments in deep learning and neutral networks.
Choose an application
Every day we interact with machine learning systems offering individualized predictions for our entertainment, social connections, purchases, or health. These involve several modalities of data, from sequences of clicks to text, images, and social interactions. This book introduces common principles and methods that underpin the design of personalized predictive models for a variety of settings and modalities. The book begins by revising 'traditional' machine learning models, focusing on adapting them to settings involving user data, then presents techniques based on advanced principles such as matrix factorization, deep learning, and generative modeling, and concludes with a detailed study of the consequences and risks of deploying personalized predictive systems. A series of case studies in domains ranging from e-commerce to health plus hands-on projects and code examples will give readers understanding and experience with large-scale real-world datasets and the ability to design models and systems for a wide range of applications.
Choose an application
Can features extracted from high spatial resolution satellite imagery accurately estimate poverty and economic well-being? This paper investigates this question by extracting object and texture features from satellite images of Sri Lanka, which are used to estimate poverty rates and average log consumption for 1,291 administrative units (Grama Niladhari divisions). The features that were extracted include the number and density of buildings, prevalence of shadows, number of cars, density and length of roads, type of agriculture, roof material, and a suite of texture and spectral features calculated using a nonoverlapping box approach. A simple linear regression model, using only these inputs as explanatory variables, explains nearly 60 percent of poverty headcount rates and average log consumption. In comparison, models built using night-time lights explain only 15 percent of the variation in poverty or income. The predictions remain accurate when restricting the sample to poorer Gram Niladhari divisions. Two sample applications, extrapolating predictions into adjacent areas and estimating local area poverty using an artificially reduced census, confirm the out-of-sample predictive capabilities.
Choose an application
AN INTRODUCTION TO MACHINE LEARNING THAT INCLUDES THE FUNDAMENTAL TECHNIQUES, METHODS, AND APPLICATIONS Machine Learning: a Concise Introduction offers a comprehensive introduction to the core concepts, approaches, and applications of machine learning. The author-an expert in the field-presents fundamental ideas, terminology, and techniques for solving applied problems in classification, regression, clustering, density estimation, and dimension reduction. The design principles behind the techniques are emphasized, including the bias-variance trade-off and its influence on the design of ensemble methods. Understanding these principles leads to more flexible and successful applications. Machine Learning: a Concise Introduction also includes methods for optimization, risk estimation, and model selection- essential elements of most applied projects. This important resource: -Illustrates many classification methods with a single, running example, highlighting similarities and differences between methods -Presents R source code which shows how to apply and interpret many of the techniques covered -Includes many thoughtful exercises as an integral part of the text, with an appendix of selected solutions -Contains useful information for effectively communicating with clients A volume in the popular Wiley Series in Probability and Statistics, Machine Learning: a Concise Introduction offers the practical information needed for an understanding of the methods and application of machine learning. STEVEN W. KNOX holds a Ph. D. in Mathematics from the University of Illinois and an M.S. in Statistics from Carnegie Mellon University. He has over twenty years' experience in using Machine Learning, Statistics, and Mathematics to solve real-world problems. He currently serves as Technical Director of Mathematics Research and Senior Advocate for Data Science at the National Security Agency.
Choose an application
Tackle common commercial machine learning problems with Google's TensorFlow 1.x library and build deployable solutions. About This Book Enter the new era of second-generation machine learning with Python with this practical and insightful guide Set up TensorFlow 1.x for actual industrial use, including high-performance setup aspects such as multi-GPU support Create pipelines for training and using applying classifiers using raw real-world data Who This Book Is For This book is for data scientists and researchers who are looking to either migrate from an existing machine learning library or jump into a machine learning platform headfirst. The book is also for software developers who wish to learn deep learning by example. Particular focus is placed on solving commercial deep learning problems from several industries using TensorFlow's unique features. No commercial domain knowledge is required, but familiarity with Python and matrix math is expected. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build deep neural networks using TensorFlow 1.x Cover key tasks such as clustering, sentiment analysis, and regression analysis using TensorFlow 1.x Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Learn how to use multiple GPUs for faster training using AWS In Detail Google's TensorFlow is a game changer in the world of machine learning. It has made machine learning faster, simpler, and more accessible than ever before. This book will teach you how to easily get started with machine learning using the power of Python and TensorFlow 1.x. Firstly, you'll cover the basic installation procedure and explore the capabilities of TensorFlow 1.x. This is followed by training and running the first classifier, and coverage of the unique features of the library including data flow graphs, training, and the visualization of performance with TensorBoard - all within an example-rich context using problems from multiple industries. You'll be able to further explore text and image analysis, and be introduced to CNN models and their setup in TensorFlow 1.x. Next, you'll implement a complete real-life production system from training to serving a deep learning model. As you advance you'll learn about Amazon Web Services (AWS) and create a deep...
Choose an application
This book covers probability and statistics from the machine learning perspective. The chapters of this book belong to three categories: 1. The basics of probability and statistics: These chapters focus on the basics of probability and statistics, and cover the key principles of these topics. Chapter 1 provides an overview of the area of probability and statistics as well as its relationship to machine learning. The fundamentals of probability and statistics are covered in Chapters 2 through 5. 2. From probability to machine learning: Many machine learning applications are addressed using probabilistic models, whose parameters are then learned in a data-driven manner. Chapters 6 through 9 explore how different models from probability and statistics are applied to machine learning. Perhaps the most important tool that bridges the gap from data to probability is maximum-likelihood estimation, which is a foundational concept from the perspective of machine learning. This concept is explored repeatedly in these chapters. 3. Advanced topics: Chapter 10 is devoted to discrete-state Markov processes. It explores the application of probability and statistics to a temporal and sequential setting, although the applications extend to more complex settings such as graphical data. Chapter 11 covers a number of probabilistic inequalities and approximations. The style of writing promotes the learning of probability and statistics simultaneously with a probabilistic perspective on the modeling of machine learning applications. The book contains over 200 worked examples in order to elucidate key concepts. Exercises are included both within the text of the chapters and at the end of the chapters. The book is written for a broad audience, including graduate students, researchers, and practitioners.
Choose an application
Das Verstehen menschlichen Verhaltens ist essenziell für intelligente technische Systeme in menschlichen Umgebungen. Diese Arbeit befasst sich mit der videobasierten Aktivitätsanalyse. Dazu werden zwei Methoden der Merkmalsextraktion untersucht: ein markerloses dreidimensionales Körpertracking mit einem evolutionären Algorithmus und ein modellfreies Tracking dynamischer Videomerkmale. Anschließend erfolgt eine Modellierung und Klassifikation von Aktivitäten auf Basis der gewonnenen Merkmale. Understanding human behavior is crucial for intelligent technical systems in human environments. In this work, methods for human activity recognition based on video data are developed. Two approaches of feature extraction are pursued: a method of markerless articulated pose estimation using an evolutionary algorithm and a model-free feature tracking method. The resulting motion representations are then used for modeling and classifying different activities.
Choose an application
This volume constitutes the refereed proceedings of the First International Workshop on Artificial Intelligence in Pancreatic Disease Detection and Diagnosis, AIPAD 2024 and the First International Workshop on Personalized Incremental Learning in Medicine, PILM 2024, held in conjunction with MICCAI 2024, in Marrakesh, Morocco, in October 2024. The 8 full papers included in these proceedings were carefully reviewed and selected from 9 submissions. They were organized in topical sections as follows: artificial intelligence in pancreatic disease detection and diagnosis; and personalized incremental learning in medicine.
Choose an application
Conducting an in-depth analysis of machine learning, this book proposes three perspectives for studying machine learning: the learning frameworks, learning paradigms, and learning tasks. With this categorization, the learning frameworks reside within the theoretical perspective, the learning paradigms pertain to the methodological perspective, and the learning tasks are situated within the problematic perspective. Throughout the book, a systematic explication of machine learning principles from these three perspectives is provided, interspersed with some examples. The book is structured into four parts, encompassing a total of fifteen chapters. The inaugural part, titled “Perspectives,” comprises two chapters: an introductory exposition and an exploration of the conceptual foundations. The second part, “Frameworks”: subdivided into five chapters, each dedicated to the discussion of five seminal frameworks: probability, statistics, connectionism, symbolism, and behaviorism. Continuing further, the third part, “Paradigms,” encompasses four chapters that explain the three paradigms of supervised learning, unsupervised learning, and reinforcement learning, and narrating several quasi-paradigms emerged in machine learning. Finally, the fourth part, “Tasks”: comprises four chapters, delving into the prevalent learning tasks of classification, regression, clustering, and dimensionality reduction. This book provides a multi-dimensional and systematic interpretation of machine learning, rendering it suitable as a textbook reference for senior undergraduates or graduate students pursuing studies in artificial intelligence, machine learning, data science, computer science, and related disciplines. Additionally, it serves as a valuable reference for those engaged in scientific research and technical endeavors within the realm of machine learning. The translation was done with the help of artificial intelligence. A subsequent human revision was done primarily in terms of content.
Listing 1 - 10 of 7059 | << page >> |
Sort by
|