Listing 1 - 10 of 27 | << page >> |
Sort by
|
Choose an application
Evolution. Phylogeny --- Molecular biology --- 530.161 --- #WSCH:AAS2 --- Principle of order in sequence of phenomena. Irreversibility. Heat death --- Molecular evolution. --- Genetic translation. --- 530.161 Principle of order in sequence of phenomena. Irreversibility. Heat death --- Molecular evolution --- Genetic translation --- Traduction génétique --- Evolution moléculaire --- Biochemical evolution --- Chemical evolution --- Evolution --- Life --- Translation (Genetics) --- Genetic code --- Genetic regulation --- Origin
Choose an application
#WSCH:AAS2 --- #WSCH:ETOS --- #GROL:SEMI-115 --- #gsdbf --- 530.161 --- 510.4 --- Tijd --- Wetenschapsfilosofie --- 530.161 Principle of order in sequence of phenomena. Irreversibility. Heat death --- Principle of order in sequence of phenomena. Irreversibility. Heat death --- Theory of relativity. Unified field theory
Choose an application
Second Generation General System Theory: Perspectives in Philosophy and Approaches in Complex Systems
Uncertainty --- Noise --- Memory Less Functions --- Self-Organisation --- Complexity --- Design --- Meta-Structures --- Scale Invariance --- Organisations --- Quantum-Like Systems --- Emergence --- Observer --- Cybernetic Approach --- Power Laws --- Reaction Networks --- Simulations --- Uniqueness --- Irreversibility --- Systems --- Incompleteness --- Computation --- Non-Linearity --- Coherence
Choose an application
Chaotic behavior in systems --- Geometric quantization --- Nonlinear theories --- Phase space (Statistical physics) --- Wigner distribution --- Chaos --- Quantification géométrique --- Théories non linéaires --- Espace des phases (Physique statistique) --- Wigner, Distribution de --- Congresses --- Congrès --- 530.161 <063> --- Principle of order in sequence of phenomena. Irreversibility. Heat death--Congressen --- 530.161 <063> Principle of order in sequence of phenomena. Irreversibility. Heat death--Congressen --- Quantification géométrique --- Théories non linéaires --- Congrès --- Congresses.
Choose an application
Problems in theoretical physics often lead to paradoxical answers; yet closer reasoning and a more complete analysis invariably lead to the resolution of the paradox and to a deeper understanding of the physics involved. Drawing primarily from his own experience and that of his collaborators, Sir Rudolf Peierls selects examples of such "surprises" from a wide range of physical theory, from quantum mechanical scattering theory to the theory of relativity, from irreversibility in statistical mechanics to the behavior of electrons in solids. By studying such surprises and learning what kind of possibilities to look for, he suggests, scientists may be able to avoid errors in future problems. In some cases the surprise is that the outcome of a calculation is contrary to what physical intuition seems to demand. In other instances an approximation that looks convincing turns out to be unjustified, or one that looks unreasonable turns out to be adequate. Professor Peierls does not suggest, however, that theoretical physics is a hazardous game in which one can never foresee the surprises a detailed calculation might reveal. Rather, he contends, all the surprises discussed have rational explanations, most of which are very simple, at least in principle. This book is based on the author's lectures at the University of Washington in the spring of 1977 and at the Institut de Physique Nucleaire, University de Paris-Sud, Orsay, during the winter of 1977-1978.
Mathematical physics. --- Physical mathematics --- Physics --- Mathematics --- "Shadow Scattering. --- Angle Operator. --- Bethe-Goldstone potential. --- Boltzmann equation. --- Debye's argument. --- Hartree-Fock method. --- Ionization. --- Irreversibility. --- Lagrange variables. --- Pauli Principle in Metals. --- Quantum Mechanics. --- Radiation in Hyperbolic Motion. --- Statistical Physics. --- Stem-Gerlach experiment. --- The Shell Model. --- Waves and Particles. --- angular momentum. --- atomic physics. --- harmonic approximation". --- ordinary perturbation theory. --- pseudomomentum. --- scattering processes. --- wave function.
Choose an application
This book results from a Special Issue related to the latest progress in the thermodynamics of machines systems and processes since the premonitory work of Carnot. Carnot invented his famous cycle and generalized the efficiency concept for thermo-mechanical engines. Since that time, research progressed from the equilibrium approach to the irreversible situation that represents the general case. This book illustrates the present state-of-the-art advances after one or two centuries of consideration regarding applications and fundamental aspects. The research is moving fast in the direction of economic and environmental aspects. This will probably continue during the coming years. This book mainly highlights the recent focus on the maximum power of engines, as well as the corresponding first law efficiency upper bounds.
History of engineering & technology --- thermodynamics --- optimization --- entropy analysis --- Carnot engine --- modelling with time durations --- steady-state modelling --- transient conditions --- converter irreversibility --- sequential optimization --- Finite physical Dimensions Optimal Thermodynamics --- global efficiency --- energy efficiency --- heat engine --- heat pump --- utilization --- Carnot efficiency --- comparison --- thermal system --- cycle analysis --- second law of thermodynamics --- Clausius Statement --- theorem of the equivalence of transformations --- linear irreversible thermodynamics --- maximum power output --- maximum ecological Function --- maximum efficient power function --- enzymatic reaction model --- ocean thermal energy conversion (OTEC) --- plate heat exchanger --- finite-time thermodynamics --- heat transfer entropy --- entropy production --- new efficiency limits --- two-stage LNG compressor --- energy losses --- exergy destruction --- exergy efficiency --- Stirling cycle --- refrigerator --- heat exchanger --- second law --- n/a
Choose an application
This book results from a Special Issue related to the latest progress in the thermodynamics of machines systems and processes since the premonitory work of Carnot. Carnot invented his famous cycle and generalized the efficiency concept for thermo-mechanical engines. Since that time, research progressed from the equilibrium approach to the irreversible situation that represents the general case. This book illustrates the present state-of-the-art advances after one or two centuries of consideration regarding applications and fundamental aspects. The research is moving fast in the direction of economic and environmental aspects. This will probably continue during the coming years. This book mainly highlights the recent focus on the maximum power of engines, as well as the corresponding first law efficiency upper bounds.
thermodynamics --- optimization --- entropy analysis --- Carnot engine --- modelling with time durations --- steady-state modelling --- transient conditions --- converter irreversibility --- sequential optimization --- Finite physical Dimensions Optimal Thermodynamics --- global efficiency --- energy efficiency --- heat engine --- heat pump --- utilization --- Carnot efficiency --- comparison --- thermal system --- cycle analysis --- second law of thermodynamics --- Clausius Statement --- theorem of the equivalence of transformations --- linear irreversible thermodynamics --- maximum power output --- maximum ecological Function --- maximum efficient power function --- enzymatic reaction model --- ocean thermal energy conversion (OTEC) --- plate heat exchanger --- finite-time thermodynamics --- heat transfer entropy --- entropy production --- new efficiency limits --- two-stage LNG compressor --- energy losses --- exergy destruction --- exergy efficiency --- Stirling cycle --- refrigerator --- heat exchanger --- second law --- n/a
Choose an application
This book results from a Special Issue related to the latest progress in the thermodynamics of machines systems and processes since the premonitory work of Carnot. Carnot invented his famous cycle and generalized the efficiency concept for thermo-mechanical engines. Since that time, research progressed from the equilibrium approach to the irreversible situation that represents the general case. This book illustrates the present state-of-the-art advances after one or two centuries of consideration regarding applications and fundamental aspects. The research is moving fast in the direction of economic and environmental aspects. This will probably continue during the coming years. This book mainly highlights the recent focus on the maximum power of engines, as well as the corresponding first law efficiency upper bounds.
History of engineering & technology --- thermodynamics --- optimization --- entropy analysis --- Carnot engine --- modelling with time durations --- steady-state modelling --- transient conditions --- converter irreversibility --- sequential optimization --- Finite physical Dimensions Optimal Thermodynamics --- global efficiency --- energy efficiency --- heat engine --- heat pump --- utilization --- Carnot efficiency --- comparison --- thermal system --- cycle analysis --- second law of thermodynamics --- Clausius Statement --- theorem of the equivalence of transformations --- linear irreversible thermodynamics --- maximum power output --- maximum ecological Function --- maximum efficient power function --- enzymatic reaction model --- ocean thermal energy conversion (OTEC) --- plate heat exchanger --- finite-time thermodynamics --- heat transfer entropy --- entropy production --- new efficiency limits --- two-stage LNG compressor --- energy losses --- exergy destruction --- exergy efficiency --- Stirling cycle --- refrigerator --- heat exchanger --- second law
Choose an application
The Special Issue “Refrigeration Systems and Applications” aims to encourage researchers to address the concerns associated with climate change and the sustainability of artificial cold production systems, and to further the transition to the more sustainable technologies and methodologies of tomorrow through theoretical, experimental, and review research on the different applications of refrigeration and associated topics.
artificial neural network --- P-? indicator diagram --- r1234ze(e) --- experimental --- ethylene-glycol nanofluids --- HFO --- magneto-caloric effect --- thermodynamic analysis --- HVAC --- refrigerant reclamation --- domestic refrigeration system --- distillation --- R-410A --- energy efficiency --- energy consumption --- LiCl-H2O --- acetoxy silicone rubber --- exergy analysis --- two-phase ejector --- modelling --- Cu nanofluids --- off-design behaviors --- eddy currents --- heat transfer --- phase change material --- r1234yf --- superheating --- irreversibility --- gadolinium --- CFD --- artificial neural network (ANN) --- CO2 --- chiller energy consumption --- vapor compression system --- thermal energy storage --- heat pump --- nanofluids --- thermodynamic performance --- transiting exergy --- caloric cooling --- solid-state cooling --- LiBr-H2O --- parasitic heat load --- hydraulic turbine --- calculation model --- magnetic refrigeration --- coefficient of performance --- transcritical system --- magnetocaloric effect --- LaFe13 ? x ? yCoxSiy --- twin-screw refrigeration compressor --- absorption refrigeration system --- thermal load --- ejector refrigeration technology --- barocaloric
Choose an application
With the advances in high-speed computer technology, complex heat transfer and fluid flow problems can be solved computationally with high accuracy. Computational modeling techniques have found a wide range of applications in diverse fields of mechanical, aerospace, energy, environmental engineering, as well as numerous industrial systems. Computational modeling has also been used extensively for performance optimization of a variety of engineering designs. The purpose of this book is to present recent advances, as well as up-to-date progress in all areas of innovative computational heat transfer and fluid mechanics, including both fundamental and practical applications. The scope of the present book includes single and multiphase flows, laminar and turbulent flows, heat and mass transfer, energy storage, heat exchangers, respiratory flows and heat transfer, biomedical applications, porous media, and optimization. In addition, this book provides guidelines for engineers and researchers in computational modeling and simulations in fluid mechanics and heat transfer.
Technology: general issues --- History of engineering & technology --- auxiliary feedwater system --- cavitation --- computational fluid dynamics --- in-service testing --- multiphase flow --- multi-stage orifice --- nonuniform metal foam --- melting heat transfer --- thermal energy storage --- conical swirl atomizer --- atomization --- CFD --- Eulerian model --- heat transfer coefficient --- micro-fins --- friction factor --- numerical methods --- micro- and macro-parameters of the atomized liquid --- mechanism of effervescent-swirl atomization --- efficiency of atomization process --- effervescent-swirl atomizer --- fixed-bed reactor --- wall structures --- complex particle shapes --- process intensification --- heat transfer --- photovoltaic cell efficiency --- thermal regulation --- energy and light harvesting --- irreversibility losses --- quantum dynamics --- nature-inspired mimicking --- heat transfer enhancement --- radiation insert --- numerical simulations --- performance evaluation criteria --- thermal efficiency --- particle sedimentation --- resistance force --- fractional-order integro-differential equation --- laplace transform --- Mittag–Leffler function --- block-pulse operational matrix --- Nu number --- microchannel heat sink --- trefoil ribs --- thermal enhancement --- thermal resistance --- triple-tube heat exchanger --- twisted fin array --- phase change material --- solidification --- nanofluids advantages and disadvantages --- thermal hydraulic performance --- vortex generators --- micro-channel
Listing 1 - 10 of 27 | << page >> |
Sort by
|