Listing 1 - 4 of 4 |
Sort by
|
Choose an application
The control of energy metabolism is a central event for cell, organ, and organism survival. There are many control levels in energy metabolism, although in this Special Issue, we concentrated on the neuroendocrine control which is operated through specialized neural circuits controlling both food intake and energy expenditure. Due to the explosion of obesity and associated diseases, the subject of this Special Issue is of particular interest today.
Medicine --- Neurosciences --- IGF1 --- IGF2 --- IGFBP2 --- high-fat diet --- obesity --- sex differences --- neuropeptides --- beige adipocyte --- white adipocyte --- brown adipocyte --- diabetes mellitus --- differentiation --- kisspeptin --- AgRP --- sheep --- reproduction --- LH --- genistein --- proopiomelanocortin --- arcuate nucleus --- rats --- endocrine disrupting chemicals --- bisphenol A --- diethylstilbestrol --- tributyltin --- neuropeptide Y --- pro-opiomelanocortin --- phytoestrogens --- endocrine disruptor --- dimorphism --- POMC --- orexin --- subfornical organ --- organum vasculosum of the lamina terminalis --- area postrema --- hypothalamus --- metabolism --- diabetes --- estrogens --- gut permeability/integrity --- insulin sensitivity --- Akkermansia --- gut microbiome --- lactate --- glycogen --- behavior --- learning --- astrocytes --- calcium signaling --- energy balance --- gliotransmission --- systemic metabolism --- amygdala --- kisspeptins --- food intake --- body weight --- intrauterine growth restriction --- macrosomia --- glucose tolerance --- abdominal adipocyte gene expression --- thrifty phenotype hypothesis
Choose an application
The control of energy metabolism is a central event for cell, organ, and organism survival. There are many control levels in energy metabolism, although in this Special Issue, we concentrated on the neuroendocrine control which is operated through specialized neural circuits controlling both food intake and energy expenditure. Due to the explosion of obesity and associated diseases, the subject of this Special Issue is of particular interest today.
IGF1 --- IGF2 --- IGFBP2 --- high-fat diet --- obesity --- sex differences --- neuropeptides --- beige adipocyte --- white adipocyte --- brown adipocyte --- diabetes mellitus --- differentiation --- kisspeptin --- AgRP --- sheep --- reproduction --- LH --- genistein --- proopiomelanocortin --- arcuate nucleus --- rats --- endocrine disrupting chemicals --- bisphenol A --- diethylstilbestrol --- tributyltin --- neuropeptide Y --- pro-opiomelanocortin --- phytoestrogens --- endocrine disruptor --- dimorphism --- POMC --- orexin --- subfornical organ --- organum vasculosum of the lamina terminalis --- area postrema --- hypothalamus --- metabolism --- diabetes --- estrogens --- gut permeability/integrity --- insulin sensitivity --- Akkermansia --- gut microbiome --- lactate --- glycogen --- behavior --- learning --- astrocytes --- calcium signaling --- energy balance --- gliotransmission --- systemic metabolism --- amygdala --- kisspeptins --- food intake --- body weight --- intrauterine growth restriction --- macrosomia --- glucose tolerance --- abdominal adipocyte gene expression --- thrifty phenotype hypothesis
Choose an application
The control of energy metabolism is a central event for cell, organ, and organism survival. There are many control levels in energy metabolism, although in this Special Issue, we concentrated on the neuroendocrine control which is operated through specialized neural circuits controlling both food intake and energy expenditure. Due to the explosion of obesity and associated diseases, the subject of this Special Issue is of particular interest today.
Medicine --- Neurosciences --- IGF1 --- IGF2 --- IGFBP2 --- high-fat diet --- obesity --- sex differences --- neuropeptides --- beige adipocyte --- white adipocyte --- brown adipocyte --- diabetes mellitus --- differentiation --- kisspeptin --- AgRP --- sheep --- reproduction --- LH --- genistein --- proopiomelanocortin --- arcuate nucleus --- rats --- endocrine disrupting chemicals --- bisphenol A --- diethylstilbestrol --- tributyltin --- neuropeptide Y --- pro-opiomelanocortin --- phytoestrogens --- endocrine disruptor --- dimorphism --- POMC --- orexin --- subfornical organ --- organum vasculosum of the lamina terminalis --- area postrema --- hypothalamus --- metabolism --- diabetes --- estrogens --- gut permeability/integrity --- insulin sensitivity --- Akkermansia --- gut microbiome --- lactate --- glycogen --- behavior --- learning --- astrocytes --- calcium signaling --- energy balance --- gliotransmission --- systemic metabolism --- amygdala --- kisspeptins --- food intake --- body weight --- intrauterine growth restriction --- macrosomia --- glucose tolerance --- abdominal adipocyte gene expression --- thrifty phenotype hypothesis
Choose an application
In this Special Issue of Genes entitled “Genetic Conditions Affecting the Skeleton: Congenital, Idiopathic Scoliosis and Arthrogryposis”, evidence is presented that suggests that congenital, idiopathic scoliosis, and arthrogryposis share similar overlapping, but also distinct, etiopathogenic mechanisms, including connective tissue and neuromuscular mechanisms. Congenital scoliosis (CS) is defined by the presence of an abnormal spinal curvature, due to an underlying vertebral bony malformation (VM). Idiopathic scoliosis (IS) is defined by the presence of an abnormal structural spinal curvature of ≥10 degrees in the sagittal plane, in the absence of an underlying VM. Arthrogryposis is defined by the presence of congenital contractures in two or more joints of the appendicular skeleton. All three conditions have complex genetic causes. This Special Issue highlights the complex nature of these conditions and current concepts in our approach to better understand their genetics.
Research & information: general --- Biology, life sciences --- Genetics (non-medical) --- spinal curvatures --- scoliosis --- idiopathic --- DNA methylation --- pyrosequencing --- estrogen receptor 1 --- ESR1 --- scoliosis progression --- adolescent idiopathic scoliosis --- idiopathic scoliosis --- exome sequencing --- spine --- polygenic --- variants --- musculoskeletal disease --- cytoskeleton --- extracellular matrix --- contracture --- arthrogryposis --- congenital --- POC5 --- cilia --- genetics --- spine deformity --- genetic predisposition --- complex trait --- model animal --- genome wide association study --- genetic linkage study --- Amyoplasia --- DECIPHER (DatabasE of genomiC variation and Phenotype in Humans using Ensemble Resources) --- CNV (copy number variant) --- DA (distal arthrogryposis) --- IPA (ingenuity pathway analysis) --- HPO (human phenotype ontology) --- akinesia --- MYOD --- IGF2 --- FGFR1 (Fibroblast growth factor receptor 1) --- genetic variations --- congenital scoliosis --- monozygotic twin --- epigenome-wide association study --- bone --- discordant --- curve severity --- differentially methylated region --- congenital vertebral malformation --- copy number variant --- CNV --- CHRNG --- distal arthrogryposis type 8 --- Escobar --- multiple pterygium syndrome --- MYH3 --- protein tyrosine kinase 7 (PTK7) --- whole exome sequencing --- n/a
Listing 1 - 4 of 4 |
Sort by
|