Narrow your search

Library

KU Leuven (3)

UGent (2)

VIVES (2)

FARO (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2019 (1)

2015 (1)

2010 (1)

1995 (1)

Listing 1 - 4 of 4
Sort by

Book
Head-up display for current force vehicles
Authors: ---
Year: 2010 Publisher: Adelphi, MD : Army Research Laboratory,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Head-up displays : designing the way ahead.
Author:
ISBN: 0291398111 Year: 1995 Publisher: Aldershot Avebury Aviation

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
SIGGRAPH Asia 2015 head-up displays and their applications.
Author:
ISBN: 1450339336 Year: 2015 Publisher: New York : ACM,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Liquid Crystal on Silicon Devices: Modeling and Advanced Spatial Light Modulation Applications
Authors: ---
ISBN: 3039218298 303921828X Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Liquid Crystal on Silicon (LCoS) has become one of the most widespread technologies for spatial light modulation in optics and photonics applications. These reflective microdisplays are composed of a high-performance silicon complementary metal oxide semiconductor (CMOS) backplane, which controls the light-modulating properties of the liquid crystal layer. State-of-the-art LCoS microdisplays may exhibit a very small pixel pitch (below 4 ?m), a very large number of pixels (resolutions larger than 4K), and high fill factors (larger than 90%). They modulate illumination sources covering the UV, visible, and far IR. LCoS are used not only as displays but also as polarization, amplitude, and phase-only spatial light modulators, where they achieve full phase modulation. Due to their excellent modulating properties and high degree of flexibility, they are found in all sorts of spatial light modulation applications, such as in LCOS-based display systems for augmented and virtual reality, true holographic displays, digital holography, diffractive optical elements, superresolution optical systems, beam-steering devices, holographic optical traps, and quantum optical computing. In order to fulfil the requirements in this extensive range of applications, specific models and characterization techniques are proposed. These devices may exhibit a number of degradation effects such as interpixel cross-talk and fringing field, and time flicker, which may also depend on the analog or digital backplane of the corresponding LCoS device. The use of appropriate characterization and compensation techniques is then necessary.

Listing 1 - 4 of 4
Sort by