Listing 1 - 10 of 45 | << page >> |
Sort by
|
Choose an application
In recent years, there has been rapid growth in the availability of innovative, non-combustible products, including oral tobacco-derived nicotine (OTDN) products, heated tobacco products (HTPs), and electronic cigarettes (also referred to as e-vapor products; EVPs). Industry, academic, and government researchers are developing and validating analytical methods to extract, separate, identify, and quantitate a variety of analytes from these innovative tobacco products using a wide range of analytical techniques. These analytes include constituents such as nicotine, degradants and impurities, flavors, non-tobacco ingredients, HPHCs, and other currently unknown constituents. In this Special Issue, we received nine contributions that covered the latest analytical methods that have been developed and applied for the chemical characterization or exposure assessment to tobacco product constituents of innovative non-combustible products. This Special Issue is representative of the importance of analytical sciences research in characterizing innovative non-combustible products for guiding product design, determining relative product performance, ensuring consistency during the manufacturing process, informing toxicological risk assessment, and enabling regulatory reporting. The current advances in the development and applications of the analytical methods reported in this Special Issue can be used to inform the harm reduction potential of innovative non-combustible products for adult smokers.
Research & information: general --- Chemistry --- Analytical chemistry --- on!® nicotine pouches --- nicotine --- dissolution --- release profile --- validation --- product assessment --- smokeless tobacco product --- nicotine degradants --- nicotine-related impurities --- alkaloids --- nicotine degradation products --- nicotine pouches --- reduced-risk products --- constituents --- method development --- method validation --- JUUL --- aerosol --- non-targeted analysis --- chemical characterization --- ENDS --- e-cigarette --- GC–MS --- LC–HRMS --- e-liquid --- 2,4-DNPH derivatization --- formaldehyde --- “hidden formaldehyde” --- formaldehyde-containing hemiacetal/acetal adducts --- HPHC --- GC-MS --- 3-hydroxybenzo[a]pyrene --- LC–MS/MS --- urine --- human biomonitoring --- derivatization --- potentially reduced-risk products --- propylene glycol --- electronic cigarette --- biomarker of exposure --- compliance marker --- oral tobacco derived nicotine (OTDN) pouches --- snus --- nicotine release --- nicotine dissolution --- nicotine extraction --- equivalence --- modern oral nicotine products --- HPHCs --- product characterizations --- n/a --- LC-HRMS --- "hidden formaldehyde" --- LC-MS/MS
Choose an application
In recent years, there has been rapid growth in the availability of innovative, non-combustible products, including oral tobacco-derived nicotine (OTDN) products, heated tobacco products (HTPs), and electronic cigarettes (also referred to as e-vapor products; EVPs). Industry, academic, and government researchers are developing and validating analytical methods to extract, separate, identify, and quantitate a variety of analytes from these innovative tobacco products using a wide range of analytical techniques. These analytes include constituents such as nicotine, degradants and impurities, flavors, non-tobacco ingredients, HPHCs, and other currently unknown constituents. In this Special Issue, we received nine contributions that covered the latest analytical methods that have been developed and applied for the chemical characterization or exposure assessment to tobacco product constituents of innovative non-combustible products. This Special Issue is representative of the importance of analytical sciences research in characterizing innovative non-combustible products for guiding product design, determining relative product performance, ensuring consistency during the manufacturing process, informing toxicological risk assessment, and enabling regulatory reporting. The current advances in the development and applications of the analytical methods reported in this Special Issue can be used to inform the harm reduction potential of innovative non-combustible products for adult smokers.
on!® nicotine pouches --- nicotine --- dissolution --- release profile --- validation --- product assessment --- smokeless tobacco product --- nicotine degradants --- nicotine-related impurities --- alkaloids --- nicotine degradation products --- nicotine pouches --- reduced-risk products --- constituents --- method development --- method validation --- JUUL --- aerosol --- non-targeted analysis --- chemical characterization --- ENDS --- e-cigarette --- GC–MS --- LC–HRMS --- e-liquid --- 2,4-DNPH derivatization --- formaldehyde --- “hidden formaldehyde” --- formaldehyde-containing hemiacetal/acetal adducts --- HPHC --- GC-MS --- 3-hydroxybenzo[a]pyrene --- LC–MS/MS --- urine --- human biomonitoring --- derivatization --- potentially reduced-risk products --- propylene glycol --- electronic cigarette --- biomarker of exposure --- compliance marker --- oral tobacco derived nicotine (OTDN) pouches --- snus --- nicotine release --- nicotine dissolution --- nicotine extraction --- equivalence --- modern oral nicotine products --- HPHCs --- product characterizations --- n/a --- LC-HRMS --- "hidden formaldehyde" --- LC-MS/MS
Choose an application
Mycotoxins represent a significant issue for the feed industry and the safety of the feed supply chain, with an impact on human health, animal health and production, economies, and international trade. The globalization of the trade in agricultural commodities and the lack of legislative harmonization have contributed significantly to the discussion about the awareness of mycotoxins entering the feed/food supply chain. The feed industry is a sustainable outlet for food processing industries, converting byproducts into high-quality animal feed. Mycotoxin occurrence in food byproducts from different technological processes is a worldwide topic of interest for the feed industry, aiming to increase the marketability and acceptance of these products as feed ingredients and include them safely in the feed supply chain. Since mycotoxin contamination cannot be completely prevented pre- or post-harvest, the modern feed industry needs new tools for monitoring and managing the risk of mycotoxins and strategies to prevent and reduce mycotoxins in compound feed manufacturing. The aim of this Special Issue book was to bring together a collection of valuable articles with innovative ideas for a sustainable and competitive feed industry.
Research & information: general --- Biology, life sciences --- Food & society --- mycotoxins --- biomarkers --- urine --- UPLC-MS/MS --- intake --- feed --- grain --- monitoring --- pet food --- HRMS-orbitrap --- co-occurrence --- retrospective screening --- Alphitobius diaperinus --- Hermetia illucens --- edible insects --- mycotoxin --- uptake --- excretion --- feed safety --- essential oils --- ecophysiology --- aflatoxins --- zearalenone --- clay --- purified --- calcined --- adsorption --- pH --- reduction --- grain cleaning --- thermal processing --- chemicals --- adsorbents --- prevention --- reduction strategies --- animal feed --- mycotoxin binders --- aflatoxin --- biomarker --- dairy cows --- durian peel --- agricultural by-products --- biosorption --- gastrointestinal digestion model --- decontamination --- equilibrium isotherms --- in-vitro cell culture --- toxicity assessment and mitigation --- mycotoxins --- biomarkers --- urine --- UPLC-MS/MS --- intake --- feed --- grain --- monitoring --- pet food --- HRMS-orbitrap --- co-occurrence --- retrospective screening --- Alphitobius diaperinus --- Hermetia illucens --- edible insects --- mycotoxin --- uptake --- excretion --- feed safety --- essential oils --- ecophysiology --- aflatoxins --- zearalenone --- clay --- purified --- calcined --- adsorption --- pH --- reduction --- grain cleaning --- thermal processing --- chemicals --- adsorbents --- prevention --- reduction strategies --- animal feed --- mycotoxin binders --- aflatoxin --- biomarker --- dairy cows --- durian peel --- agricultural by-products --- biosorption --- gastrointestinal digestion model --- decontamination --- equilibrium isotherms --- in-vitro cell culture --- toxicity assessment and mitigation
Choose an application
Mycotoxins represent a significant issue for the feed industry and the safety of the feed supply chain, with an impact on human health, animal health and production, economies, and international trade. The globalization of the trade in agricultural commodities and the lack of legislative harmonization have contributed significantly to the discussion about the awareness of mycotoxins entering the feed/food supply chain. The feed industry is a sustainable outlet for food processing industries, converting byproducts into high-quality animal feed. Mycotoxin occurrence in food byproducts from different technological processes is a worldwide topic of interest for the feed industry, aiming to increase the marketability and acceptance of these products as feed ingredients and include them safely in the feed supply chain. Since mycotoxin contamination cannot be completely prevented pre- or post-harvest, the modern feed industry needs new tools for monitoring and managing the risk of mycotoxins and strategies to prevent and reduce mycotoxins in compound feed manufacturing. The aim of this Special Issue book was to bring together a collection of valuable articles with innovative ideas for a sustainable and competitive feed industry.
mycotoxins --- biomarkers --- urine --- UPLC-MS/MS --- intake --- feed --- grain --- monitoring --- pet food --- HRMS-orbitrap --- co-occurrence --- retrospective screening --- Alphitobius diaperinus --- Hermetia illucens --- edible insects --- mycotoxin --- uptake --- excretion --- feed safety --- essential oils --- ecophysiology --- aflatoxins --- zearalenone --- clay --- purified --- calcined --- adsorption --- pH --- reduction --- grain cleaning --- thermal processing --- chemicals --- adsorbents --- prevention --- reduction strategies --- animal feed --- mycotoxin binders --- aflatoxin --- biomarker --- dairy cows --- durian peel --- agricultural by-products --- biosorption --- gastrointestinal digestion model --- decontamination --- equilibrium isotherms --- in-vitro cell culture --- toxicity assessment and mitigation --- n/a
Choose an application
This Book of Toxins comprises 11 original contributions and one review. New findings regarding presence of mycotoxins in aromatic and medicinal plants, mango and orange juice, juices, pulps, jams, and beer, from Morocco, Pakistan, and Portugal are reported. In these studies, innovative techniques to study their presence has been developed, including liquid chromatography coupled with time-of-flight mass spectrometry to analyse mycotoxins and conjugated mycotoxins. Novel strategies to detect mycotoxin presence and comparisons the characteristics of a rapid quantitative analysis of different mycotoxins (deoxynivalenol, ochratoxin A, patulin, sterigmatocystin, and zearalenone) are also presented using acetyl- and butyrylcholinesterases and photobacterial strains of luminescent cells. Additionally, toxicological effects of zearalenone metabolites and beauvericin on SH-SY5Y neuronal cells are presented. One important point in the control of mycotoxins is related to decontaminated strategies, and in this sense the efficacy of potentially probiotic fruit-derived Lactobacillus isolates in removing aflatoxin M1 (AFM1) is presented. Other mycotoxin decontaminated techniques included in this book are electron beam irradiation (EBI) and degradation of zearalenone and ochratoxin A using ozone. Finally, a review that summarizes the newly discovered macrocyclic trichothecenes and their bioactivities over the last decade is included.The evaluation of the presence of mycotoxins in different matrices is achieved through different analytical tools (including quantitative or qualitative determinations). Studies of mycotoxin isolation, using chromatographyc equipment coupled to spectrometry detectors (QTrap-MS/MS, MS/MS tandem, QTOF-MS/MS), are the most useful tools to control their presence. All these studies represent key steps in the establishment of the limits of detection, limits of quantification, points of identification, accuracy, reproducibility, and repeatability of different procedures. The maximum permitted or recommended levels for mycotoxins in different matrices are within a wide range (including the levels tolerated by infants and animals). In addition, decontaminated strategies, as well as control and evaluation of exposure, are demanded by authorities and food safety systems.
Medicine --- patulin --- mango --- orange --- fruit-derived products --- food safety --- regulatory limits --- chitosan --- mycotoxins --- detoxification --- LC-MS/MS --- optimization --- Destruxins --- Bombyx mori --- BmArgRS --- BmLamin-C --- RNA helicase --- binding protein --- ozone --- electron beam irradiation --- degradation --- zearalenone --- ochratoxin A --- SH-SY5Y cells --- zearalenone derivates --- beauvericin --- MTT --- qTOF–MS/MS --- beer --- immunoaffinity clean-up --- LC-FD --- human risk assessment --- Enniatin B1 --- biomonitoring --- in vivo --- metabolomics --- high resolution mass spectrometry (HRMS) --- macrocyclic trichothecenes --- bioactivities --- putative biosynthetic pathway --- macrocycle formation --- entomopathogens --- mycoinsecticides --- secondary metabolites --- insect pathogenesis --- acetamiprid accumulation --- aflatoxin M1 --- Lactobacillus --- probiotics --- binding --- bioluminescent bacteria --- immobilized cells --- cholinesterase-based analysis --- analytical characteristics --- enzymatic detoxification --- co-occurrence --- Q-TOF-LC/MS --- exposure --- Morocco --- n/a --- qTOF-MS/MS
Choose an application
Given the continuous consumer demand for products of high quality and specific origin, there is a great tendency toward the application of multiple instrumental techniques for the complete characterization of foodstuffs or related natural products. Spectrometric techniques usually offer a full and rapid screenshot of a product’s composition and properties by the determination of specific biomolecules such as sugars, minerals, polyphenols, volatile compounds, amino acids, and organic acids. The present Special Issue aimed firstly to enhance the advances of the application of spectrometric techniques such as gas chromatography coupled to mass spectrometry (GC-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), isotope-ratio mass spectrometry (IRMS), nuclear magnetic resonance (NMR), Raman spectroscopy, or any other spectrometric technique, in the analysis of foodstuffs such as meat, milk, cheese, potatoes, vegetables, fruits/fruit juices, honey, olive oil, chocolate, and other natural products. An additional goal was to fill the gap between food composition/food properties/natural product properties and food/natural product authenticity, using supervised and nonsupervised chemometrics.
Research & information: general --- characterization --- beekeepers’ honey --- minerals --- inductively coupled plasma optical emission spectrometry (ICP-OES) --- chemometrics --- HPTLC --- LC–HRMS --- PCA --- metabolomics --- Arbutus unedo --- antioxidant activities --- honey variety --- honey code --- HS-SPME/GC-MS --- data handling --- data bank --- fluorescence --- rapeseed oil --- multiway analysis --- parallel factor analysis (PARAFAC) --- multivariate regression --- caffeine --- 16-O-methylcafestol --- kahweol --- furfuryl alcohol --- tetramethylsilane (TMS) --- magnetic resonance spectroscopy --- validation studies --- hyperspectral imaging --- jowl meat --- minced pork --- meat adulteration --- visualization --- oilseeds --- Caatinga --- native --- spectrometry --- honey --- adulteration --- feature variable --- partial least square regression --- laser-induced breakdown spectroscopy --- mushroom --- Pleurotus --- glucan --- ergosterol --- mid-infrared spectroscopy --- FTIR --- spectroscopy --- prediction --- coffee --- meat --- Pleurotus mushrooms
Choose an application
Mycotoxins represent a significant issue for the feed industry and the safety of the feed supply chain, with an impact on human health, animal health and production, economies, and international trade. The globalization of the trade in agricultural commodities and the lack of legislative harmonization have contributed significantly to the discussion about the awareness of mycotoxins entering the feed/food supply chain. The feed industry is a sustainable outlet for food processing industries, converting byproducts into high-quality animal feed. Mycotoxin occurrence in food byproducts from different technological processes is a worldwide topic of interest for the feed industry, aiming to increase the marketability and acceptance of these products as feed ingredients and include them safely in the feed supply chain. Since mycotoxin contamination cannot be completely prevented pre- or post-harvest, the modern feed industry needs new tools for monitoring and managing the risk of mycotoxins and strategies to prevent and reduce mycotoxins in compound feed manufacturing. The aim of this Special Issue book was to bring together a collection of valuable articles with innovative ideas for a sustainable and competitive feed industry.
Research & information: general --- Biology, life sciences --- Food & society --- mycotoxins --- biomarkers --- urine --- UPLC-MS/MS --- intake --- feed --- grain --- monitoring --- pet food --- HRMS-orbitrap --- co-occurrence --- retrospective screening --- Alphitobius diaperinus --- Hermetia illucens --- edible insects --- mycotoxin --- uptake --- excretion --- feed safety --- essential oils --- ecophysiology --- aflatoxins --- zearalenone --- clay --- purified --- calcined --- adsorption --- pH --- reduction --- grain cleaning --- thermal processing --- chemicals --- adsorbents --- prevention --- reduction strategies --- animal feed --- mycotoxin binders --- aflatoxin --- biomarker --- dairy cows --- durian peel --- agricultural by-products --- biosorption --- gastrointestinal digestion model --- decontamination --- equilibrium isotherms --- in-vitro cell culture --- toxicity assessment and mitigation --- n/a
Choose an application
Given the continuous consumer demand for products of high quality and specific origin, there is a great tendency toward the application of multiple instrumental techniques for the complete characterization of foodstuffs or related natural products. Spectrometric techniques usually offer a full and rapid screenshot of a product’s composition and properties by the determination of specific biomolecules such as sugars, minerals, polyphenols, volatile compounds, amino acids, and organic acids. The present Special Issue aimed firstly to enhance the advances of the application of spectrometric techniques such as gas chromatography coupled to mass spectrometry (GC-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), isotope-ratio mass spectrometry (IRMS), nuclear magnetic resonance (NMR), Raman spectroscopy, or any other spectrometric technique, in the analysis of foodstuffs such as meat, milk, cheese, potatoes, vegetables, fruits/fruit juices, honey, olive oil, chocolate, and other natural products. An additional goal was to fill the gap between food composition/food properties/natural product properties and food/natural product authenticity, using supervised and nonsupervised chemometrics.
characterization --- beekeepers’ honey --- minerals --- inductively coupled plasma optical emission spectrometry (ICP-OES) --- chemometrics --- HPTLC --- LC–HRMS --- PCA --- metabolomics --- Arbutus unedo --- antioxidant activities --- honey variety --- honey code --- HS-SPME/GC-MS --- data handling --- data bank --- fluorescence --- rapeseed oil --- multiway analysis --- parallel factor analysis (PARAFAC) --- multivariate regression --- caffeine --- 16-O-methylcafestol --- kahweol --- furfuryl alcohol --- tetramethylsilane (TMS) --- magnetic resonance spectroscopy --- validation studies --- hyperspectral imaging --- jowl meat --- minced pork --- meat adulteration --- visualization --- oilseeds --- Caatinga --- native --- spectrometry --- honey --- adulteration --- feature variable --- partial least square regression --- laser-induced breakdown spectroscopy --- mushroom --- Pleurotus --- glucan --- ergosterol --- mid-infrared spectroscopy --- FTIR --- spectroscopy --- prediction --- coffee --- meat --- Pleurotus mushrooms
Choose an application
This Book of Toxins comprises 11 original contributions and one review. New findings regarding presence of mycotoxins in aromatic and medicinal plants, mango and orange juice, juices, pulps, jams, and beer, from Morocco, Pakistan, and Portugal are reported. In these studies, innovative techniques to study their presence has been developed, including liquid chromatography coupled with time-of-flight mass spectrometry to analyse mycotoxins and conjugated mycotoxins. Novel strategies to detect mycotoxin presence and comparisons the characteristics of a rapid quantitative analysis of different mycotoxins (deoxynivalenol, ochratoxin A, patulin, sterigmatocystin, and zearalenone) are also presented using acetyl- and butyrylcholinesterases and photobacterial strains of luminescent cells. Additionally, toxicological effects of zearalenone metabolites and beauvericin on SH-SY5Y neuronal cells are presented. One important point in the control of mycotoxins is related to decontaminated strategies, and in this sense the efficacy of potentially probiotic fruit-derived Lactobacillus isolates in removing aflatoxin M1 (AFM1) is presented. Other mycotoxin decontaminated techniques included in this book are electron beam irradiation (EBI) and degradation of zearalenone and ochratoxin A using ozone. Finally, a review that summarizes the newly discovered macrocyclic trichothecenes and their bioactivities over the last decade is included.The evaluation of the presence of mycotoxins in different matrices is achieved through different analytical tools (including quantitative or qualitative determinations). Studies of mycotoxin isolation, using chromatographyc equipment coupled to spectrometry detectors (QTrap-MS/MS, MS/MS tandem, QTOF-MS/MS), are the most useful tools to control their presence. All these studies represent key steps in the establishment of the limits of detection, limits of quantification, points of identification, accuracy, reproducibility, and repeatability of different procedures. The maximum permitted or recommended levels for mycotoxins in different matrices are within a wide range (including the levels tolerated by infants and animals). In addition, decontaminated strategies, as well as control and evaluation of exposure, are demanded by authorities and food safety systems.
patulin --- mango --- orange --- fruit-derived products --- food safety --- regulatory limits --- chitosan --- mycotoxins --- detoxification --- LC-MS/MS --- optimization --- Destruxins --- Bombyx mori --- BmArgRS --- BmLamin-C --- RNA helicase --- binding protein --- ozone --- electron beam irradiation --- degradation --- zearalenone --- ochratoxin A --- SH-SY5Y cells --- zearalenone derivates --- beauvericin --- MTT --- qTOF–MS/MS --- beer --- immunoaffinity clean-up --- LC-FD --- human risk assessment --- Enniatin B1 --- biomonitoring --- in vivo --- metabolomics --- high resolution mass spectrometry (HRMS) --- macrocyclic trichothecenes --- bioactivities --- putative biosynthetic pathway --- macrocycle formation --- entomopathogens --- mycoinsecticides --- secondary metabolites --- insect pathogenesis --- acetamiprid accumulation --- aflatoxin M1 --- Lactobacillus --- probiotics --- binding --- bioluminescent bacteria --- immobilized cells --- cholinesterase-based analysis --- analytical characteristics --- enzymatic detoxification --- co-occurrence --- Q-TOF-LC/MS --- exposure --- Morocco --- n/a --- qTOF-MS/MS
Choose an application
Pesticides are used worldwide, and despite the fact that organic farming is increasing, they are still widely applied in different countries with pesticide regulations and monitoring programs. This Special Issue will cover the topic of the presence of pesticide residues in food, paying special attention to the use of modern analytical techniques based on chromatographic techniques coupled to mass spectrometry. Generic extraction methods are needed to allow the detection of pesticides with different physic-chemical properties, as well as different families of contaminants can be extracted simultaneously. Nevertheless, pluriresidue methods are still necessary for “orphan” compounds that cannot be included in multiresidue methods. Thus, in addition to targeted pesticides, the scope of this analysis can be increased and nowadays, metabolites are also detected, evaluating the degradation of pesticide residues in different food matrices.
Public health & preventive medicine --- dispersive solid-liquid extraction --- sulfonylurea herbicides --- QuEChERS --- strawberry --- cleanup --- OCPs --- PCBs --- smoked pork meat products --- pancetta --- pork neck --- pork tenderloin --- sausage --- traditional and industrial smoking --- high polar pesticides --- UHPLC-Orbitrap-MS --- QuPPe --- pluri-residue analysis --- pesticide residues --- low-residue production --- zero-residue production --- half-lives --- pre-harvest interval --- lettuce --- onion --- leek --- carrot --- parsley --- phytohormones --- acidic herbicides --- fruits and vegetables --- multifamily method --- UHPLC-MS/MS --- residues in food --- pesticides --- LC-MS/MS --- GC-MS/MS --- honey --- persistent organic pollutants (POPs) --- glyphosate --- AMPA --- organic honey --- IC-HRMS --- food safety --- tea --- pyrethroid pesticide metabolite --- ultra-high performance liquid chromatography tandem mass spectrometry --- modified QuEChERS --- herbicide residues --- non-residual production --- low-residual production --- pesticide degradation in vegetables --- dispersive solid-liquid extraction --- sulfonylurea herbicides --- QuEChERS --- strawberry --- cleanup --- OCPs --- PCBs --- smoked pork meat products --- pancetta --- pork neck --- pork tenderloin --- sausage --- traditional and industrial smoking --- high polar pesticides --- UHPLC-Orbitrap-MS --- QuPPe --- pluri-residue analysis --- pesticide residues --- low-residue production --- zero-residue production --- half-lives --- pre-harvest interval --- lettuce --- onion --- leek --- carrot --- parsley --- phytohormones --- acidic herbicides --- fruits and vegetables --- multifamily method --- UHPLC-MS/MS --- residues in food --- pesticides --- LC-MS/MS --- GC-MS/MS --- honey --- persistent organic pollutants (POPs) --- glyphosate --- AMPA --- organic honey --- IC-HRMS --- food safety --- tea --- pyrethroid pesticide metabolite --- ultra-high performance liquid chromatography tandem mass spectrometry --- modified QuEChERS --- herbicide residues --- non-residual production --- low-residual production --- pesticide degradation in vegetables
Listing 1 - 10 of 45 | << page >> |
Sort by
|