Listing 1 - 6 of 6 |
Sort by
|
Choose an application
In the last few decades, organic materials (or carbon-based materials in a broad sense), including polymers, have received much attention for their potential applications in electronics, because they have outstanding advantages such as high processibility, mechanical flexibility, and low weight. Extensive research efforts have thus been devoted to the development and advancement of organic materials for various applications, covering a wide range from molecular design to device fabrication methods. In addition, it has been recognized that surfaces and interfaces play a crucial role in the operation and performance of the devices. For instance, various interactions at organic–metal interfaces are of great importance in organic epitaxy, and also have a strong correlation with intermolecular structures and their electronic properties. In this context, the main focus of this Special Issue was collecting scientific contributions addressing surface and interface engineering with organic materials, and related applications. The diversity of contributions presented in this Special Issue exhibits relevant progress and the potential of organic materials in a variety of applications that are not limited to the fabrication of organic devices.
Technology: general issues --- silk fibroin --- hybrid nanoflowers surface --- Pb(II) removal --- interaction mechanism --- off-axis conic surface --- shape accuracy --- auto-collimation --- single CGH --- hybrid compensation --- organic electronics --- liquid semiconductors --- charge injection --- surface engineering --- crack engineering --- eutectic gallium indium --- EGaIn --- liquid metal --- gallium alloy --- flexible photodetector --- flexible electronics --- perovskite solar cells --- performance improvement --- lead acetate --- cesium doping --- stimuli-responsive hydrogels --- thermogelling polymers --- sol–gel transition behaviors --- complex colloidal systems --- conducting polymer --- PEDOT:PSS --- electrical conductivity --- processing additive --- linear glycol --- sigmoidal function --- liquid metals --- gallium alloys --- Galinstan --- flexible electronics photodetectors --- solar-blind photodetection --- n/a --- sol-gel transition behaviors
Choose an application
In the last few decades, organic materials (or carbon-based materials in a broad sense), including polymers, have received much attention for their potential applications in electronics, because they have outstanding advantages such as high processibility, mechanical flexibility, and low weight. Extensive research efforts have thus been devoted to the development and advancement of organic materials for various applications, covering a wide range from molecular design to device fabrication methods. In addition, it has been recognized that surfaces and interfaces play a crucial role in the operation and performance of the devices. For instance, various interactions at organic–metal interfaces are of great importance in organic epitaxy, and also have a strong correlation with intermolecular structures and their electronic properties. In this context, the main focus of this Special Issue was collecting scientific contributions addressing surface and interface engineering with organic materials, and related applications. The diversity of contributions presented in this Special Issue exhibits relevant progress and the potential of organic materials in a variety of applications that are not limited to the fabrication of organic devices.
silk fibroin --- hybrid nanoflowers surface --- Pb(II) removal --- interaction mechanism --- off-axis conic surface --- shape accuracy --- auto-collimation --- single CGH --- hybrid compensation --- organic electronics --- liquid semiconductors --- charge injection --- surface engineering --- crack engineering --- eutectic gallium indium --- EGaIn --- liquid metal --- gallium alloy --- flexible photodetector --- flexible electronics --- perovskite solar cells --- performance improvement --- lead acetate --- cesium doping --- stimuli-responsive hydrogels --- thermogelling polymers --- sol–gel transition behaviors --- complex colloidal systems --- conducting polymer --- PEDOT:PSS --- electrical conductivity --- processing additive --- linear glycol --- sigmoidal function --- liquid metals --- gallium alloys --- Galinstan --- flexible electronics photodetectors --- solar-blind photodetection --- n/a --- sol-gel transition behaviors
Choose an application
In the last few decades, organic materials (or carbon-based materials in a broad sense), including polymers, have received much attention for their potential applications in electronics, because they have outstanding advantages such as high processibility, mechanical flexibility, and low weight. Extensive research efforts have thus been devoted to the development and advancement of organic materials for various applications, covering a wide range from molecular design to device fabrication methods. In addition, it has been recognized that surfaces and interfaces play a crucial role in the operation and performance of the devices. For instance, various interactions at organic–metal interfaces are of great importance in organic epitaxy, and also have a strong correlation with intermolecular structures and their electronic properties. In this context, the main focus of this Special Issue was collecting scientific contributions addressing surface and interface engineering with organic materials, and related applications. The diversity of contributions presented in this Special Issue exhibits relevant progress and the potential of organic materials in a variety of applications that are not limited to the fabrication of organic devices.
Technology: general issues --- silk fibroin --- hybrid nanoflowers surface --- Pb(II) removal --- interaction mechanism --- off-axis conic surface --- shape accuracy --- auto-collimation --- single CGH --- hybrid compensation --- organic electronics --- liquid semiconductors --- charge injection --- surface engineering --- crack engineering --- eutectic gallium indium --- EGaIn --- liquid metal --- gallium alloy --- flexible photodetector --- flexible electronics --- perovskite solar cells --- performance improvement --- lead acetate --- cesium doping --- stimuli-responsive hydrogels --- thermogelling polymers --- sol-gel transition behaviors --- complex colloidal systems --- conducting polymer --- PEDOT:PSS --- electrical conductivity --- processing additive --- linear glycol --- sigmoidal function --- liquid metals --- gallium alloys --- Galinstan --- flexible electronics photodetectors --- solar-blind photodetection
Choose an application
Micro electrical discharge machining (micro-EDM) is a thermo-electric and contactless process most suited for micro-manufacturing and high-precision machining, especially when difficult-to-cut materials, such as super alloys, composites, and electro conductive ceramics, are processed. Many industrial domains exploit this technology to fabricate highly demanding components, such as high-aspect-ratio micro holes for fuel injectors, high-precision molds, and biomedical parts.Moreover, the continuous trend towards miniaturization and high precision functional components boosted the development of control strategies and optimization methodologies specifically suited to address the challenges in micro- and nano-scale fabrication.This Special Issue showcases 12 research papers and a review article focusing on novel methodological developments on several aspects of micro electrical discharge machining: machinability studies of hard materials (TiNi shape memory alloys, Si3N4–TiN ceramic composite, ZrB2-based ceramics reinforced with SiC fibers and whiskers, tungsten-cemented carbide, Ti-6Al-4V alloy, duplex stainless steel, and cubic boron nitride), process optimization adopting different dielectrics or electrodes, characterization of mechanical performance of processed surface, process analysis, and optimization via discharge pulse-type discrimination, hybrid processes, fabrication of molds for inflatable soft microactuators, and implementation of low-cost desktop micro-EDM system.
Technology: general issues --- electrodischarge micromachining --- drilling --- cubic boron nitride --- foil queue microelectrode --- micro-EDM --- step effect --- tapered structure --- wire electrical discharge grinding (WEDG) --- micromoulding --- soft microrobotics --- electrical discharge machining (EDM) --- Tungsten cemented carbide (WC-Co) --- desktop micro-electrical discharge machining (micro-EDM) system --- cut-side micro-tool --- micro-holes --- EDM --- SR --- TWR --- PMEDM --- MRR --- electro-discharge treatment --- Ti-6Al-4V --- MWCNTs --- surface characterization --- wear resistance --- corrosion resistance --- composite 3D microelectrode --- diffusion bonding --- step --- 3D microstructure --- material processing --- DSS-2205 alloy --- electric-discharge machining --- surface integrity --- surface wettability --- ceramic composite --- micro-EDM milling --- pulse discrimination --- Micro-electro-discharge machining (μEDM) --- liquid-metal electrode --- Galinstan --- Zirconium Boride --- silicon carbide fibers --- silicon carbide whiskers --- advanced material --- TiNi shape memory alloy --- TiC powder --- surface modification --- microhardness --- electrochemical discharge machining --- laser machining --- glass --- micro-groove --- n/a
Choose an application
Micro electrical discharge machining (micro-EDM) is a thermo-electric and contactless process most suited for micro-manufacturing and high-precision machining, especially when difficult-to-cut materials, such as super alloys, composites, and electro conductive ceramics, are processed. Many industrial domains exploit this technology to fabricate highly demanding components, such as high-aspect-ratio micro holes for fuel injectors, high-precision molds, and biomedical parts.Moreover, the continuous trend towards miniaturization and high precision functional components boosted the development of control strategies and optimization methodologies specifically suited to address the challenges in micro- and nano-scale fabrication.This Special Issue showcases 12 research papers and a review article focusing on novel methodological developments on several aspects of micro electrical discharge machining: machinability studies of hard materials (TiNi shape memory alloys, Si3N4–TiN ceramic composite, ZrB2-based ceramics reinforced with SiC fibers and whiskers, tungsten-cemented carbide, Ti-6Al-4V alloy, duplex stainless steel, and cubic boron nitride), process optimization adopting different dielectrics or electrodes, characterization of mechanical performance of processed surface, process analysis, and optimization via discharge pulse-type discrimination, hybrid processes, fabrication of molds for inflatable soft microactuators, and implementation of low-cost desktop micro-EDM system.
electrodischarge micromachining --- drilling --- cubic boron nitride --- foil queue microelectrode --- micro-EDM --- step effect --- tapered structure --- wire electrical discharge grinding (WEDG) --- micromoulding --- soft microrobotics --- electrical discharge machining (EDM) --- Tungsten cemented carbide (WC-Co) --- desktop micro-electrical discharge machining (micro-EDM) system --- cut-side micro-tool --- micro-holes --- EDM --- SR --- TWR --- PMEDM --- MRR --- electro-discharge treatment --- Ti-6Al-4V --- MWCNTs --- surface characterization --- wear resistance --- corrosion resistance --- composite 3D microelectrode --- diffusion bonding --- step --- 3D microstructure --- material processing --- DSS-2205 alloy --- electric-discharge machining --- surface integrity --- surface wettability --- ceramic composite --- micro-EDM milling --- pulse discrimination --- Micro-electro-discharge machining (μEDM) --- liquid-metal electrode --- Galinstan --- Zirconium Boride --- silicon carbide fibers --- silicon carbide whiskers --- advanced material --- TiNi shape memory alloy --- TiC powder --- surface modification --- microhardness --- electrochemical discharge machining --- laser machining --- glass --- micro-groove --- n/a
Choose an application
Micro electrical discharge machining (micro-EDM) is a thermo-electric and contactless process most suited for micro-manufacturing and high-precision machining, especially when difficult-to-cut materials, such as super alloys, composites, and electro conductive ceramics, are processed. Many industrial domains exploit this technology to fabricate highly demanding components, such as high-aspect-ratio micro holes for fuel injectors, high-precision molds, and biomedical parts.Moreover, the continuous trend towards miniaturization and high precision functional components boosted the development of control strategies and optimization methodologies specifically suited to address the challenges in micro- and nano-scale fabrication.This Special Issue showcases 12 research papers and a review article focusing on novel methodological developments on several aspects of micro electrical discharge machining: machinability studies of hard materials (TiNi shape memory alloys, Si3N4–TiN ceramic composite, ZrB2-based ceramics reinforced with SiC fibers and whiskers, tungsten-cemented carbide, Ti-6Al-4V alloy, duplex stainless steel, and cubic boron nitride), process optimization adopting different dielectrics or electrodes, characterization of mechanical performance of processed surface, process analysis, and optimization via discharge pulse-type discrimination, hybrid processes, fabrication of molds for inflatable soft microactuators, and implementation of low-cost desktop micro-EDM system.
Technology: general issues --- electrodischarge micromachining --- drilling --- cubic boron nitride --- foil queue microelectrode --- micro-EDM --- step effect --- tapered structure --- wire electrical discharge grinding (WEDG) --- micromoulding --- soft microrobotics --- electrical discharge machining (EDM) --- Tungsten cemented carbide (WC-Co) --- desktop micro-electrical discharge machining (micro-EDM) system --- cut-side micro-tool --- micro-holes --- EDM --- SR --- TWR --- PMEDM --- MRR --- electro-discharge treatment --- Ti-6Al-4V --- MWCNTs --- surface characterization --- wear resistance --- corrosion resistance --- composite 3D microelectrode --- diffusion bonding --- step --- 3D microstructure --- material processing --- DSS-2205 alloy --- electric-discharge machining --- surface integrity --- surface wettability --- ceramic composite --- micro-EDM milling --- pulse discrimination --- Micro-electro-discharge machining (μEDM) --- liquid-metal electrode --- Galinstan --- Zirconium Boride --- silicon carbide fibers --- silicon carbide whiskers --- advanced material --- TiNi shape memory alloy --- TiC powder --- surface modification --- microhardness --- electrochemical discharge machining --- laser machining --- glass --- micro-groove
Listing 1 - 6 of 6 |
Sort by
|