Listing 1 - 10 of 1289 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
Nonlinear analysis has wide and significant applications in many areas of mathematics, including functional analysis, variational analysis, nonlinear optimization, convex analysis, nonlinear ordinary and partial differential equations, dynamical system theory, mathematical economics, game theory, signal processing, control theory, data mining, and so forth. Optimization problems have been intensively investigated, and various feasible methods in analyzing convergence of algorithms have been developed over the last half century. In this Special Issue, we will focus on the connection between nonlinear analysis and optimization as well as their applications to integrate basic science into the real world.
Choose an application
Choose an application
Choose an application
Fourier analysis is a subject that was born in physics but grew up in mathematics. Now it is part of the standard repertoire for mathematicians, physicists and engineers. In most books, this diversity of interest is often ignored, but here Dr Körner has provided a shop-window for some of the ideas, techniques and elegant results of Fourier analysis, and for their applications. These range from number theory, numerical analysis, control theory and statistics, to earth science, astronomy, and electrical engineering. Each application is placed in perspective by a short essay. The prerequisites are few (the reader with knowledge of second or third year undergraduate mathematics should have no difficulty following the text), and the style is lively and entertaining. In short, this stimulating account will be welcomed by all who like to read about more than the bare bones of a subject. For them this will be a meaty guide to Fourier analysis.
Choose an application
Nonlinear analysis has wide and significant applications in many areas of mathematics, including functional analysis, variational analysis, nonlinear optimization, convex analysis, nonlinear ordinary and partial differential equations, dynamical system theory, mathematical economics, game theory, signal processing, control theory, data mining, and so forth. Optimization problems have been intensively investigated, and various feasible methods in analyzing convergence of algorithms have been developed over the last half century. In this Special Issue, we will focus on the connection between nonlinear analysis and optimization as well as their applications to integrate basic science into the real world.
Choose an application
Fourier analysis is a subject that was born in physics but grew up in mathematics. Now it is part of the standard repertoire for mathematicians, physicists and engineers. This diversity of interest is often overlooked, but in this much-loved book, Tom Körner provides a shop window for some of the ideas, techniques and elegant results of Fourier analysis, and for their applications. These range from number theory, numerical analysis, control theory and statistics, to earth science, astronomy and electrical engineering. The prerequisites are few (a reader with knowledge of second- or third-year undergraduate mathematics should have no difficulty following the text), and the style is lively and entertaining. This edition of Körner's 1989 text includes a foreword written by Professor Terence Tao introducing it to a new generation of fans.
Choose an application
This book is concerned with the well-established mathematical technique known as Fourier analysis (or alternatively as harmonic or spectral analysis). It is a handbook comprising a collection of the most important theorems in Fourier analysis, presented without proof in a form that is accurate but also accessible to a reader who is not a specialist mathematician. The technique of Fourier analysis has long been of fundamental importance in the physical sciences, engineering and applied mathematics, and is today of particular importance in communications theory and signal analysis. Existing books on the subject are either rigorous treatments, intended for mathematicians, or are intended for non-mathematicians, and avoid the finer points of the theory. This book bridges the gap between the two types. The text is self-contained in that it includes examples of the use of the various theorems, and any mathematical concepts not usually included in degree courses in physical sciences and engineering are explained. This handbook will be of value to postgraduates and research workers in the physical sciences and in engineering subjects, particularly communications and electronic engineering.
Choose an application
Fourier analysis is a mathematical technique for decomposing a signal into identifiable components. It is used in the study of all types of waves. This book explains the basic mathematical theory and some of the principal applications of Fourier analysis in areas ranging from sound and vibration to optics and CAT scanning. The author provides in-depth coverage of the techniques and includes exercises that demonstrate straightforward applications of formulas as well as more complex problems.
Harmonic analysis. Fourier analysis --- Fourier analysis. --- Fourier Analysis.
Listing 1 - 10 of 1289 | << page >> |
Sort by
|