Narrow your search

Library

ULiège (3)

KU Leuven (1)

National Bank of Belgium (1)

UAntwerpen (1)

UCLouvain (1)

UGent (1)

Vlerick Business School (1)

VUB (1)


Resource type

book (4)


Language

English (4)


Year
From To Submit

2021 (1)

2019 (1)

2016 (1)

2014 (1)

Listing 1 - 4 of 4
Sort by

Book
Summing it up : from one plus one to modern number theory
Authors: ---
ISBN: 140088053X Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

We use addition on a daily basis-yet how many of us stop to truly consider the enormous and remarkable ramifications of this mathematical activity? Summing It Up uses addition as a springboard to present a fascinating and accessible look at numbers and number theory, and how we apply beautiful numerical properties to answer math problems. Mathematicians Avner Ash and Robert Gross explore addition's most basic characteristics as well as the addition of squares and other powers before moving onward to infinite series, modular forms, and issues at the forefront of current mathematical research.Ash and Gross tailor their succinct and engaging investigations for math enthusiasts of all backgrounds. Employing college algebra, the first part of the book examines such questions as, can all positive numbers be written as a sum of four perfect squares? The second section of the book incorporates calculus and examines infinite series-long sums that can only be defined by the concept of limit, as in the example of 1+1/2+1/4+. . .=? With the help of some group theory and geometry, the third section ties together the first two parts of the book through a discussion of modular forms-the analytic functions on the upper half-plane of the complex numbers that have growth and transformation properties. Ash and Gross show how modular forms are indispensable in modern number theory, for example in the proof of Fermat's Last Theorem.Appropriate for numbers novices as well as college math majors, Summing It Up delves into mathematics that will enlighten anyone fascinated by numbers.

Keywords

Number theory. --- Mathematics --- Number study --- Numbers, Theory of --- Algebra --- Absolute value. --- Addition. --- Analytic continuation. --- Analytic function. --- Automorphic form. --- Axiom. --- Bernoulli number. --- Big O notation. --- Binomial coefficient. --- Binomial theorem. --- Book. --- Calculation. --- Chain rule. --- Coefficient. --- Complex analysis. --- Complex number. --- Complex plane. --- Computation. --- Congruence subgroup. --- Conjecture. --- Constant function. --- Constant term. --- Convergent series. --- Coprime integers. --- Counting. --- Cusp form. --- Determinant. --- Diagram (category theory). --- Dirichlet series. --- Division by zero. --- Divisor. --- Elementary proof. --- Elliptic curve. --- Equation. --- Euclidean geometry. --- Existential quantification. --- Exponential function. --- Factorization. --- Fourier series. --- Function composition. --- Fundamental domain. --- Gaussian integer. --- Generating function. --- Geometric series. --- Geometry. --- Group theory. --- Hecke operator. --- Hexagonal number. --- Hyperbolic geometry. --- Integer factorization. --- Integer. --- Line segment. --- Linear combination. --- Logarithm. --- Mathematical induction. --- Mathematician. --- Mathematics. --- Matrix group. --- Modular form. --- Modular group. --- Natural number. --- Non-Euclidean geometry. --- Parity (mathematics). --- Pentagonal number. --- Periodic function. --- Polynomial. --- Power series. --- Prime factor. --- Prime number theorem. --- Prime number. --- Pythagorean theorem. --- Quadratic residue. --- Quantity. --- Radius of convergence. --- Rational number. --- Real number. --- Remainder. --- Riemann surface. --- Root of unity. --- Scientific notation. --- Semicircle. --- Series (mathematics). --- Sign (mathematics). --- Square number. --- Square root. --- Subgroup. --- Subset. --- Sum of squares. --- Summation. --- Taylor series. --- Theorem. --- Theory. --- Transfinite number. --- Triangular number. --- Two-dimensional space. --- Unique factorization domain. --- Upper half-plane. --- Variable (mathematics). --- Vector space.


Book
The Master Equation and the Convergence Problem in Mean Field Games : (AMS-201)
Authors: --- ---
ISBN: 0691193711 Year: 2019 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population. While originating in economics, this theory now has applications in areas as diverse as mathematical finance, crowd phenomena, epidemiology, and cybersecurity.Because mean field games concern the interactions of infinitely many players in an optimal control framework, one expects them to appear as the limit for Nash equilibria of differential games with finitely many players, as the number of players tends to infinity. This book rigorously establishes this convergence, which has been an open problem until now. The limit of the system associated with differential games with finitely many players is described by the so-called master equation, a nonlocal transport equation in the space of measures. After defining a suitable notion of differentiability in the space of measures, the authors provide a complete self-contained analysis of the master equation. Their analysis includes the case of common noise problems in which all the players are affected by a common Brownian motion. They then go on to explain how to use the master equation to prove the mean field limit.This groundbreaking book presents two important new results in mean field games that contribute to a unified theoretical framework for this exciting and fast-developing area of mathematics.

Keywords

Convergence. --- Mean field theory. --- Many-body problem --- Statistical mechanics --- Functions --- A priori estimate. --- Approximation. --- Bellman equation. --- Boltzmann equation. --- Boundary value problem. --- C0. --- Chain rule. --- Compact space. --- Computation. --- Conditional probability distribution. --- Continuous function. --- Convergence problem. --- Convex set. --- Cooperative game. --- Corollary. --- Decision-making. --- Derivative. --- Deterministic system. --- Differentiable function. --- Directional derivative. --- Discrete time and continuous time. --- Discretization. --- Dynamic programming. --- Emergence. --- Empirical distribution function. --- Equation. --- Estimation. --- Euclidean space. --- Folk theorem (game theory). --- Folk theorem. --- Heat equation. --- Hermitian adjoint. --- Implementation. --- Initial condition. --- Integer. --- Large numbers. --- Linearization. --- Lipschitz continuity. --- Lp space. --- Macroeconomic model. --- Markov process. --- Martingale (probability theory). --- Master equation. --- Mathematical optimization. --- Maximum principle. --- Method of characteristics. --- Metric space. --- Monograph. --- Monotonic function. --- Nash equilibrium. --- Neumann boundary condition. --- Nonlinear system. --- Notation. --- Numerical analysis. --- Optimal control. --- Parameter. --- Partial differential equation. --- Periodic boundary conditions. --- Porous medium. --- Probability measure. --- Probability theory. --- Probability. --- Random function. --- Random variable. --- Randomization. --- Rate of convergence. --- Regime. --- Scientific notation. --- Semigroup. --- Simultaneous equations. --- Small number. --- Smoothness. --- Space form. --- State space. --- State variable. --- Stochastic calculus. --- Stochastic control. --- Stochastic process. --- Stochastic. --- Subset. --- Suggestion. --- Symmetric function. --- Technology. --- Theorem. --- Theory. --- Time consistency. --- Time derivative. --- Uniqueness. --- Variable (mathematics). --- Vector space. --- Viscosity solution. --- Wasserstein metric. --- Weak solution. --- Wiener process. --- Without loss of generality.


Book
When least is best : how mathematicians discovered many clever ways to make things as small (or as large) as possible
Author:
ISBN: 0691220387 9780691218762 Year: 2021 Publisher: Princeton, New Jersey : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

A mathematical journey through the most fascinating problems of extremes and how to solve them. What is the best way to photograph a speeding bullet? How can lost hikers find their way out of a forest? Why does light move through glass in the least amount of time possible? When Least Is Best combines the mathematical history of extrema with contemporary examples to answer these intriguing questions and more. Paul Nahin shows how life often works at the extremes--with values becoming as small (or as large) as possible--and he considers how mathematicians over the centuries, including Descartes, Fermat, and Kepler, have grappled with these problems of minima and maxima. Throughout, Nahin examines entertaining conundrums, such as how to build the shortest bridge possible between two towns, how to vary speed during a race, and how to make the perfect basketball shot. Moving from medieval writings and modern calculus to the field of optimization, the engaging and witty explorations of When Least Is Best will delight math enthusiasts everywhere.

Keywords

Mathematics --- Maxima and minima. --- MATHEMATICS / History & Philosophy. --- History. --- Minima --- Math --- Science --- AP Calculus. --- Addition. --- Almost surely. --- American Mathematical Monthly. --- Arc (geometry). --- Calculation. --- Cambridge University Press. --- Cartesian coordinate system. --- Catenary. --- Central angle. --- Chain rule. --- Change of variables. --- Circumference. --- Clockwise. --- Convex function. --- Coordinate system. --- Curve. --- Cycloid. --- Cylinder (geometry). --- Derivative. --- Diameter. --- Differential calculus. --- Differential equation. --- Dimension. --- Dynamic programming. --- Elementary function. --- Equation. --- Equilateral triangle. --- Euler–Lagrange equation. --- Fermat's principle. --- Fluxion. --- Geometry. --- Honeycomb conjecture. --- Hyperbolic function. --- Hypotenuse. --- Illustration. --- Inequality of arithmetic and geometric means. --- Instant. --- Integer. --- Isoperimetric problem. --- Iteration. --- Jensen's inequality. --- Johann Bernoulli. --- Kinetic energy. --- Length. --- Line (geometry). --- Line segment. --- Linear programming. --- Logarithm. --- Mathematical maturity. --- Mathematical problem. --- Mathematician. --- Mathematics. --- Newton's method. --- Notation. --- Parabola. --- Parametric equation. --- Partial derivative. --- Perimeter. --- Philosopher. --- Physicist. --- Pierre de Fermat. --- Polygon. --- Polynomial. --- Potential energy. --- Princeton University Press. --- Projectile. --- Pumping station. --- Pythagorean theorem. --- Quadratic equation. --- Quadratic formula. --- Quantity. --- Ray (optics). --- Real number. --- Rectangle. --- Refraction. --- Refractive index. --- Regiomontanus. --- Requirement. --- Result. --- Right angle. --- Right triangle. --- Science. --- Scientific notation. --- Second derivative. --- Semicircle. --- Sign (mathematics). --- Simple algebra. --- Simplex algorithm. --- Snell's law. --- Special case. --- Square root. --- Summation. --- Surface area. --- Tangent. --- Trigonometric functions. --- Variable (mathematics). --- Vertex angle. --- Writing.


Book
Demand Functions and the Slutsky Matrix. (PSME-7), Volume 7
Author:
ISBN: 0691042225 1306989531 1400853060 0691616140 9781400853069 0691643466 9780691042220 9780691643465 9780691616148 Year: 2014 Volume: 7 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The utility idea has had a long history in economics, especially in the explanation of demand and in welfare economics. In a comprehensive survey and critique of the Slutsky theory and the pattern to which it belongs in the economic context, S. N. Afriat offers a resolution of questions central to its main idea, including sufficient conditions as well.Originally published in 1980.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Demand functions (Economic theory) --- Utility theory --- 330.105 --- 338.5 --- Demand (Economic theory) --- Value --- Revealed preference theory --- Demand curves (Economic theory) --- Functions, Demand (Economic theory) --- Economics --- 330.105 Wiskundige economie. Wiskundige methoden in de economie --- Wiskundige economie. Wiskundige methoden in de economie --- 338.5 Prijsvorming. Prijskostenverhouding. Prijsbeweging. Prijsfluctuatie--macroeconomisch; prijsindex zie {336.748.12} --- Prijsvorming. Prijskostenverhouding. Prijsbeweging. Prijsfluctuatie--macroeconomisch; prijsindex zie {336.748.12} --- Mathematical models --- Quantitative methods (economics) --- E-books --- Utility theory. --- DEMAND FUNCTIONS (Economic theory) --- Adjoint. --- Aggregate supply. --- Arrow's impossibility theorem. --- Axiom. --- Big O notation. --- Bruno de Finetti. --- Chain rule. --- Coefficient. --- Commodity. --- Concave function. --- Continuous function. --- Convex cone. --- Convex function. --- Convex set. --- Corollary. --- Cost curve. --- Cost-effectiveness analysis. --- Cost–benefit analysis. --- Counterexample. --- Demand curve. --- Derivative. --- Determinant. --- Differentiable function. --- Differential calculus. --- Differential equation. --- Differential form. --- Divisia index. --- Economic equilibrium. --- Economics. --- Einstein notation. --- Equivalence relation. --- Explicit formulae (L-function). --- Factorization. --- Frobenius theorem (differential topology). --- Function (mathematics). --- Functional equation. --- General equilibrium theory. --- Heine–Borel theorem. --- Hessian matrix. --- Homogeneous function. --- Idempotence. --- Identity (mathematics). --- Identity matrix. --- Inequality (mathematics). --- Inference. --- Infimum and supremum. --- Integrating factor. --- Interdependence. --- Interval (mathematics). --- Inverse demand function. --- Inverse function theorem. --- Inverse function. --- Invertible matrix. --- Lagrange multiplier. --- Lagrangian (field theory). --- Lagrangian. --- Law of demand. --- Limit point. --- Line segment. --- Linear function. --- Linear inequality. --- Linear map. --- Linearity. --- Logical disjunction. --- Marginal cost. --- Mathematical induction. --- Mathematical optimization. --- Maxima and minima. --- Monotonic function. --- Ordinary differential equation. --- Orthogonal complement. --- Oskar Morgenstern. --- Pareto efficiency. --- Partial derivative. --- Permutation. --- Preference (economics). --- Price index. --- Principal part. --- Production function. --- Production theory. --- Quasiconvex function. --- Recursive definition. --- Reductio ad absurdum. --- Regular matrix. --- Requirement. --- Row and column vectors. --- Samuelson condition. --- Second derivative. --- Sign (mathematics). --- Special case. --- Statistic. --- Support function. --- Symmetric relation. --- Theorem. --- Theory. --- Transpose. --- Upper and lower bounds. --- Utility. --- Variable (mathematics). --- Welfare economics.

Listing 1 - 4 of 4
Sort by