Narrow your search

Library

ULiège (8)

UAntwerpen (6)

UGent (5)

KU Leuven (4)

UCLouvain (4)

UHasselt (4)

ULB (4)

VUB (4)

Royal Belgian Institute for Natural Sciences (1)

UMons (1)


Resource type

book (11)


Language

English (11)


Year
From To Submit

2019 (1)

2018 (1)

2016 (2)

2015 (1)

1983 (1)

More...
Listing 1 - 10 of 11 << page
of 2
>>
Sort by
The Neumann problem for the Cauchy-Riemann complex
Authors: ---
ISBN: 0691081204 1400881528 9780691081205 Year: 1972 Volume: 75 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Part explanation of important recent work, and part introduction to some of the techniques of modern partial differential equations, this monograph is a self-contained exposition of the Neumann problem for the Cauchy-Riemann complex and certain of its applications. The authors prove the main existence and regularity theorems in detail, assuming only a knowledge of the basic theory of differentiable manifolds and operators on Hilbert space. They discuss applications to the theory of several complex variables, examine the associated complex on the boundary, and outline other techniques relevant to these problems. In an appendix they develop the functional analysis of differential operators in terms of Sobolev spaces, to the extent it is required for the monograph.

Keywords

Functional analysis --- Neumann problem --- Differential operators --- Complex manifolds --- Complex manifolds. --- Differential operators. --- Neumann problem. --- Differential equations, Partial --- Équations aux dérivées partielles --- Analytic spaces --- Manifolds (Mathematics) --- Operators, Differential --- Differential equations --- Operator theory --- Boundary value problems --- A priori estimate. --- Almost complex manifold. --- Analytic function. --- Apply. --- Approximation. --- Bernhard Riemann. --- Boundary value problem. --- Calculation. --- Cauchy–Riemann equations. --- Cohomology. --- Compact space. --- Complex analysis. --- Complex manifold. --- Coordinate system. --- Corollary. --- Derivative. --- Differentiable manifold. --- Differential equation. --- Differential form. --- Differential operator. --- Dimension (vector space). --- Dirichlet boundary condition. --- Eigenvalues and eigenvectors. --- Elliptic operator. --- Equation. --- Estimation. --- Euclidean space. --- Existence theorem. --- Exterior (topology). --- Finite difference. --- Fourier analysis. --- Fourier transform. --- Frobenius theorem (differential topology). --- Functional analysis. --- Hilbert space. --- Hodge theory. --- Holomorphic function. --- Holomorphic vector bundle. --- Irreducible representation. --- Line segment. --- Linear programming. --- Local coordinates. --- Lp space. --- Manifold. --- Monograph. --- Multi-index notation. --- Nonlinear system. --- Operator (physics). --- Overdetermined system. --- Partial differential equation. --- Partition of unity. --- Potential theory. --- Power series. --- Pseudo-differential operator. --- Pseudoconvexity. --- Pseudogroup. --- Pullback. --- Regularity theorem. --- Remainder. --- Scientific notation. --- Several complex variables. --- Sheaf (mathematics). --- Smoothness. --- Sobolev space. --- Special case. --- Statistical significance. --- Sturm–Liouville theory. --- Submanifold. --- Tangent bundle. --- Theorem. --- Uniform norm. --- Vector field. --- Weight function. --- Operators in hilbert space --- Équations aux dérivées partielles

Prospects in mathematics : [a symposium held in Princeton on March 16-18, 1970]
Authors: --- ---
ISBN: 0691080941 9780691080949 1400881692 Year: 1971 Volume: 70 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Five papers by distinguished American and European mathematicians describe some current trends in mathematics in the perspective of the recent past and in terms of expectations for the future. Among the subjects discussed are algebraic groups, quadratic forms, topological aspects of global analysis, variants of the index theorem, and partial differential equations.

Keywords

Mathematics --- Mathématiques --- Congresses --- Congrès --- 51 --- -Math --- Science --- Congresses. --- -Mathematics --- 51 Mathematics --- -51 Mathematics --- Math --- Mathématiques --- Congrès --- A priori estimate. --- Addition. --- Additive group. --- Affine space. --- Algebraic geometry. --- Algebraic group. --- Atiyah–Singer index theorem. --- Bernoulli number. --- Boundary value problem. --- Bounded operator. --- C*-algebra. --- Canonical transformation. --- Cauchy problem. --- Characteristic class. --- Clifford algebra. --- Coefficient. --- Cohomology. --- Commutative property. --- Commutative ring. --- Complex manifold. --- Complex number. --- Complex vector bundle. --- Dedekind sum. --- Degenerate bilinear form. --- Diagram (category theory). --- Diffeomorphism. --- Differentiable manifold. --- Differential operator. --- Dimension (vector space). --- Ellipse. --- Elliptic operator. --- Equation. --- Euler characteristic. --- Euler number. --- Existence theorem. --- Exotic sphere. --- Finite difference. --- Finite group. --- Fourier integral operator. --- Fourier transform. --- Fourier. --- Fredholm operator. --- Hardy space. --- Hilbert space. --- Holomorphic vector bundle. --- Homogeneous coordinates. --- Homomorphism. --- Homotopy. --- Hyperbolic partial differential equation. --- Identity component. --- Integer. --- Integral transform. --- Isomorphism class. --- John Milnor. --- K-theory. --- Lebesgue measure. --- Line bundle. --- Local ring. --- Mathematics. --- Maximal ideal. --- Modular form. --- Module (mathematics). --- Monoid. --- Normal bundle. --- Number theory. --- Open set. --- Parametrix. --- Parity (mathematics). --- Partial differential equation. --- Piecewise linear manifold. --- Poisson bracket. --- Polynomial ring. --- Polynomial. --- Prime number. --- Principal part. --- Projective space. --- Pseudo-differential operator. --- Quadratic form. --- Rational variety. --- Real number. --- Reciprocity law. --- Resolution of singularities. --- Riemann–Roch theorem. --- Shift operator. --- Simply connected space. --- Special case. --- Square-integrable function. --- Subalgebra. --- Submanifold. --- Support (mathematics). --- Surjective function. --- Symmetric bilinear form. --- Symplectic vector space. --- Tangent space. --- Theorem. --- Topology. --- Variable (mathematics). --- Vector bundle. --- Vector space. --- Winding number. --- Mathematics - Congresses

Functional Integration and Partial Differential Equations. (AM-109), Volume 109
Author:
ISBN: 0691083541 1400881595 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book discusses some aspects of the theory of partial differential equations from the viewpoint of probability theory. It is intended not only for specialists in partial differential equations or probability theory but also for specialists in asymptotic methods and in functional analysis. It is also of interest to physicists who use functional integrals in their research. The work contains results that have not previously appeared in book form, including research contributions of the author.

Keywords

Partial differential equations --- Differential equations, Partial. --- Probabilities. --- Integration, Functional. --- Functional integration --- Functional analysis --- Integrals, Generalized --- Probability --- Statistical inference --- Combinations --- Mathematics --- Chance --- Least squares --- Mathematical statistics --- Risk --- A priori estimate. --- Absolute continuity. --- Almost surely. --- Analytic continuation. --- Axiom. --- Big O notation. --- Boundary (topology). --- Boundary value problem. --- Bounded function. --- Calculation. --- Cauchy problem. --- Central limit theorem. --- Characteristic function (probability theory). --- Chebyshev's inequality. --- Coefficient. --- Comparison theorem. --- Continuous function (set theory). --- Continuous function. --- Convergence of random variables. --- Cylinder set. --- Degeneracy (mathematics). --- Derivative. --- Differential equation. --- Differential operator. --- Diffusion equation. --- Diffusion process. --- Dimension (vector space). --- Direct method in the calculus of variations. --- Dirichlet boundary condition. --- Dirichlet problem. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Elliptic operator. --- Elliptic partial differential equation. --- Equation. --- Existence theorem. --- Exponential function. --- Feynman–Kac formula. --- Fokker–Planck equation. --- Function space. --- Functional analysis. --- Fundamental solution. --- Gaussian measure. --- Girsanov theorem. --- Hessian matrix. --- Hölder condition. --- Independence (probability theory). --- Integral curve. --- Integral equation. --- Invariant measure. --- Iterated logarithm. --- Itô's lemma. --- Joint probability distribution. --- Laplace operator. --- Laplace's equation. --- Lebesgue measure. --- Limit (mathematics). --- Limit cycle. --- Limit point. --- Linear differential equation. --- Linear map. --- Lipschitz continuity. --- Markov chain. --- Markov process. --- Markov property. --- Maximum principle. --- Mean value theorem. --- Measure (mathematics). --- Modulus of continuity. --- Moment (mathematics). --- Monotonic function. --- Navier–Stokes equations. --- Nonlinear system. --- Ordinary differential equation. --- Parameter. --- Partial differential equation. --- Periodic function. --- Poisson kernel. --- Probabilistic method. --- Probability space. --- Probability theory. --- Probability. --- Random function. --- Regularization (mathematics). --- Schrödinger equation. --- Self-adjoint operator. --- Sign (mathematics). --- Simultaneous equations. --- Smoothness. --- State-space representation. --- Stochastic calculus. --- Stochastic differential equation. --- Stochastic. --- Support (mathematics). --- Theorem. --- Theory. --- Uniqueness theorem. --- Variable (mathematics). --- Weak convergence (Hilbert space). --- Wiener process.


Book
Estimates for the -Neumann problem
Authors: ---
ISBN: 0691080135 1400869226 Year: 1977 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The ∂̄ Neumann problem is probably the most important and natural example of a non-elliptic boundary value problem, arising as it does from the Cauchy-Riemann equations. It has been known for some time how to prove solvability and regularity by the use of L2 methods. In this monograph the authors apply recent methods involving the Heisenberg group to obtain parametricies and to give sharp estimates in various function spaces, leading to a better understanding of the ∂̄ Neumann problem. The authors have added substantial background material to make the monograph more accessible to students.Originally published in 1977.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Partial differential equations --- Neumann problem. --- Neumann problem --- Mathematics --- Physical Sciences & Mathematics --- Calculus --- Boundary value problems --- Differential equations, Partial --- A priori estimate. --- Abuse of notation. --- Analytic continuation. --- Analytic function. --- Approximation. --- Asymptotic expansion. --- Asymptotic formula. --- Basis (linear algebra). --- Besov space. --- Boundary (topology). --- Boundary value problem. --- Boundedness. --- Calculation. --- Cauchy's integral formula. --- Cauchy–Riemann equations. --- Change of variables. --- Characterization (mathematics). --- Combination. --- Commutative property. --- Commutator. --- Complex analysis. --- Complex manifold. --- Complex number. --- Computation. --- Convolution. --- Coordinate system. --- Corollary. --- Counterexample. --- Derivative. --- Determinant. --- Differential equation. --- Dimension (vector space). --- Dimension. --- Dimensional analysis. --- Dirichlet boundary condition. --- Eigenvalues and eigenvectors. --- Elliptic boundary value problem. --- Equation. --- Error term. --- Estimation. --- Even and odd functions. --- Existential quantification. --- Function space. --- Fundamental solution. --- Green's theorem. --- Half-space (geometry). --- Hardy's inequality. --- Heisenberg group. --- Holomorphic function. --- Infimum and supremum. --- Integer. --- Integral curve. --- Integral expression. --- Inverse function. --- Invertible matrix. --- Iteration. --- Laplace's equation. --- Left inverse. --- Lie algebra. --- Lie group. --- Linear combination. --- Logarithm. --- Lp space. --- Mathematical induction. --- Neumann boundary condition. --- Notation. --- Open problem. --- Orthogonal complement. --- Orthogonality. --- Parametrix. --- Partial derivative. --- Pointwise. --- Polynomial. --- Principal branch. --- Principal part. --- Projection (linear algebra). --- Pseudo-differential operator. --- Quantity. --- Recursive definition. --- Schwartz space. --- Scientific notation. --- Second derivative. --- Self-adjoint. --- Singular value. --- Sobolev space. --- Special case. --- Standard basis. --- Stein manifold. --- Subgroup. --- Subset. --- Summation. --- Support (mathematics). --- Tangent bundle. --- Theorem. --- Theory. --- Upper half-plane. --- Variable (mathematics). --- Vector field. --- Volume element. --- Weak solution. --- Neumann, Problème de --- Equations aux derivees partielles --- Problemes aux limites

Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105
Author:
ISBN: 0691083304 0691083312 1400881625 9780691083315 Year: 2016 Volume: no. 105 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The description for this book, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105, will be forthcoming.

Keywords

Calculus of variations --- Integrals, Multiple --- Differential equations, Elliptic --- Calcul des variations --- Equations différentielles elliptiques --- $ PDMC --- Multiple integrals --- Calculus of variations. --- Multiple integrals. --- Differential equations, Elliptic. --- Equations différentielles elliptiques --- Elliptic differential equations --- Elliptic partial differential equations --- Linear elliptic differential equations --- Differential equations, Linear --- Differential equations, Partial --- Double integrals --- Iterated integrals --- Triple integrals --- Integrals --- Probabilities --- Isoperimetrical problems --- Variations, Calculus of --- Maxima and minima --- A priori estimate. --- Analytic function. --- Boundary value problem. --- Coefficient. --- Compact space. --- Convex function. --- Convex set. --- Corollary. --- Counterexample. --- David Hilbert. --- Dense set. --- Derivative. --- Differentiable function. --- Differential geometry. --- Dirichlet integral. --- Dirichlet problem. --- Division by zero. --- Ellipse. --- Energy functional. --- Equation. --- Estimation. --- Euler equations (fluid dynamics). --- Existential quantification. --- First variation. --- Generic property. --- Harmonic function. --- Harmonic map. --- Hausdorff dimension. --- Hölder's inequality. --- I0. --- Infimum and supremum. --- Limit superior and limit inferior. --- Linear equation. --- Maxima and minima. --- Maximal function. --- Metric space. --- Minimal surface. --- Multiple integral. --- Nonlinear system. --- Obstacle problem. --- Open set. --- Partial derivative. --- Quantity. --- Semi-continuity. --- Singular solution. --- Smoothness. --- Sobolev space. --- Special case. --- Stationary point. --- Subsequence. --- Subset. --- Theorem. --- Topological property. --- Topology. --- Uniform convergence. --- Variational inequality. --- Weak formulation. --- Weak solution.


Book
The Master Equation and the Convergence Problem in Mean Field Games : (AMS-201)
Authors: --- ---
ISBN: 0691193711 Year: 2019 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population. While originating in economics, this theory now has applications in areas as diverse as mathematical finance, crowd phenomena, epidemiology, and cybersecurity.Because mean field games concern the interactions of infinitely many players in an optimal control framework, one expects them to appear as the limit for Nash equilibria of differential games with finitely many players, as the number of players tends to infinity. This book rigorously establishes this convergence, which has been an open problem until now. The limit of the system associated with differential games with finitely many players is described by the so-called master equation, a nonlocal transport equation in the space of measures. After defining a suitable notion of differentiability in the space of measures, the authors provide a complete self-contained analysis of the master equation. Their analysis includes the case of common noise problems in which all the players are affected by a common Brownian motion. They then go on to explain how to use the master equation to prove the mean field limit.This groundbreaking book presents two important new results in mean field games that contribute to a unified theoretical framework for this exciting and fast-developing area of mathematics.

Keywords

Convergence. --- Mean field theory. --- Many-body problem --- Statistical mechanics --- Functions --- A priori estimate. --- Approximation. --- Bellman equation. --- Boltzmann equation. --- Boundary value problem. --- C0. --- Chain rule. --- Compact space. --- Computation. --- Conditional probability distribution. --- Continuous function. --- Convergence problem. --- Convex set. --- Cooperative game. --- Corollary. --- Decision-making. --- Derivative. --- Deterministic system. --- Differentiable function. --- Directional derivative. --- Discrete time and continuous time. --- Discretization. --- Dynamic programming. --- Emergence. --- Empirical distribution function. --- Equation. --- Estimation. --- Euclidean space. --- Folk theorem (game theory). --- Folk theorem. --- Heat equation. --- Hermitian adjoint. --- Implementation. --- Initial condition. --- Integer. --- Large numbers. --- Linearization. --- Lipschitz continuity. --- Lp space. --- Macroeconomic model. --- Markov process. --- Martingale (probability theory). --- Master equation. --- Mathematical optimization. --- Maximum principle. --- Method of characteristics. --- Metric space. --- Monograph. --- Monotonic function. --- Nash equilibrium. --- Neumann boundary condition. --- Nonlinear system. --- Notation. --- Numerical analysis. --- Optimal control. --- Parameter. --- Partial differential equation. --- Periodic boundary conditions. --- Porous medium. --- Probability measure. --- Probability theory. --- Probability. --- Random function. --- Random variable. --- Randomization. --- Rate of convergence. --- Regime. --- Scientific notation. --- Semigroup. --- Simultaneous equations. --- Small number. --- Smoothness. --- Space form. --- State space. --- State variable. --- Stochastic calculus. --- Stochastic control. --- Stochastic process. --- Stochastic. --- Subset. --- Suggestion. --- Symmetric function. --- Technology. --- Theorem. --- Theory. --- Time consistency. --- Time derivative. --- Uniqueness. --- Variable (mathematics). --- Vector space. --- Viscosity solution. --- Wasserstein metric. --- Weak solution. --- Wiener process. --- Without loss of generality.


Book
Auxiliary Signal Design for Failure Detection
Authors: ---
ISBN: 1680159283 1400880041 Year: 2015 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Many industries, such as transportation and manufacturing, use control systems to insure that parameters such as temperature or altitude behave in a desirable way over time. For example, pilots need assurance that the plane they are flying will maintain a particular heading. An integral part of control systems is a mechanism for failure detection to insure safety and reliability. This book offers an alternative failure detection approach that addresses two of the fundamental problems in the safe and efficient operation of modern control systems: failure detection--deciding when a failure has occurred--and model identification--deciding which kind of failure has occurred. Much of the work in both categories has been based on statistical methods and under the assumption that a given system was monitored passively. Campbell and Nikoukhah's book proposes an "active" multimodel approach. It calls for applying an auxiliary signal that will affect the output so that it can be used to easily determine if there has been a failure and what type of failure it is. This auxiliary signal must be kept small, and often brief in duration, in order not to interfere with system performance and to ensure timely detection of the failure. The approach is robust and uses tools from robust control theory. Unlike some approaches, it is applicable to complex systems. The authors present the theory in a rigorous and intuitive manner and provide practical algorithms for implementation of the procedures.

Keywords

System failures (Engineering) --- Fault location (Engineering) --- Signal processing. --- Processing, Signal --- Information measurement --- Signal theory (Telecommunication) --- Location of system faults --- System fault location (Engineering) --- Dynamic testing --- Failure of engineering systems --- Reliability (Engineering) --- Systems engineering --- A priori estimate. --- AIXI. --- Abuse of notation. --- Accuracy and precision. --- Additive white Gaussian noise. --- Algorithm. --- Approximation. --- Asymptotic analysis. --- Bisection method. --- Boundary value problem. --- Calculation. --- Catastrophic failure. --- Combination. --- Computation. --- Condition number. --- Continuous function. --- Control theory. --- Control variable. --- Decision theory. --- Derivative. --- Detection. --- Deterministic system. --- Diagram (category theory). --- Differential equation. --- Discrete time and continuous time. --- Discretization. --- Dynamic programming. --- Engineering design process. --- Engineering. --- Equation. --- Error message. --- Estimation theory. --- Estimation. --- Finite difference. --- Gain scheduling. --- Inequality (mathematics). --- Initial condition. --- Integrator. --- Invertible matrix. --- Laplace transform. --- Least squares. --- Likelihood function. --- Likelihood-ratio test. --- Limit point. --- Linear programming. --- Linearization. --- Mathematical optimization. --- Mathematical problem. --- Maxima and minima. --- Measurement. --- Method of lines. --- Monotonic function. --- Noise power. --- Nonlinear control. --- Nonlinear programming. --- Norm (mathematics). --- Numerical analysis. --- Numerical control. --- Numerical integration. --- Observational error. --- Open problem. --- Optimal control. --- Optimization problem. --- Parameter. --- Partial differential equation. --- Piecewise. --- Pointwise. --- Prediction. --- Probability. --- Random variable. --- Realizability. --- Remedial action. --- Requirement. --- Rewriting. --- Riccati equation. --- Runge–Kutta methods. --- Sampled data systems. --- Sampling (signal processing). --- Scientific notation. --- Scilab. --- Shift operator. --- Signal (electrical engineering). --- Sine wave. --- Solver. --- Special case. --- Stochastic Modeling. --- Stochastic calculus. --- Stochastic interpretation. --- Stochastic process. --- Stochastic. --- Theorem. --- Time complexity. --- Time-invariant system. --- Trade-off. --- Transfer function. --- Transient response. --- Uncertainty. --- Utilization. --- Variable (mathematics). --- Variance.


Book
The Mathematics of Shock Reflection-Diffraction and von Neumann's Conjectures
Authors: ---
ISBN: 1400885434 Year: 2018 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book offers a survey of recent developments in the analysis of shock reflection-diffraction, a detailed presentation of original mathematical proofs of von Neumann's conjectures for potential flow, and a collection of related results and new techniques in the analysis of partial differential equations (PDEs), as well as a set of fundamental open problems for further development.Shock waves are fundamental in nature. They are governed by the Euler equations or their variants, generally in the form of nonlinear conservation laws-PDEs of divergence form. When a shock hits an obstacle, shock reflection-diffraction configurations take shape. To understand the fundamental issues involved, such as the structure and transition criteria of different configuration patterns, it is essential to establish the global existence, regularity, and structural stability of shock reflection-diffraction solutions. This involves dealing with several core difficulties in the analysis of nonlinear PDEs-mixed type, free boundaries, and corner singularities-that also arise in fundamental problems in diverse areas such as continuum mechanics, differential geometry, mathematical physics, and materials science. Presenting recently developed approaches and techniques, which will be useful for solving problems with similar difficulties, this book opens up new research opportunities.

Keywords

Shock waves --- Von Neumann algebras. --- MATHEMATICS / Differential Equations / Partial. --- Algebras, Von Neumann --- Algebras, W --- Neumann algebras --- Rings of operators --- W*-algebras --- C*-algebras --- Hilbert space --- Shock (Mechanics) --- Waves --- Diffraction --- Diffraction. --- Mathematics. --- A priori estimate. --- Accuracy and precision. --- Algorithm. --- Andrew Majda. --- Attractor. --- Banach space. --- Bernhard Riemann. --- Big O notation. --- Boundary value problem. --- Bounded set (topological vector space). --- C0. --- Calculation. --- Cauchy problem. --- Coefficient. --- Computation. --- Computational fluid dynamics. --- Conjecture. --- Conservation law. --- Continuum mechanics. --- Convex function. --- Degeneracy (mathematics). --- Demetrios Christodoulou. --- Derivative. --- Dimension. --- Directional derivative. --- Dirichlet boundary condition. --- Dirichlet problem. --- Dissipation. --- Ellipse. --- Elliptic curve. --- Elliptic partial differential equation. --- Embedding problem. --- Equation solving. --- Equation. --- Estimation. --- Euler equations (fluid dynamics). --- Existential quantification. --- Fixed point (mathematics). --- Flow network. --- Fluid dynamics. --- Fluid mechanics. --- Free boundary problem. --- Function (mathematics). --- Function space. --- Fundamental class. --- Fundamental solution. --- Fundamental theorem. --- Hyperbolic partial differential equation. --- Initial value problem. --- Iteration. --- Laplace's equation. --- Linear equation. --- Linear programming. --- Linear space (geometry). --- Mach reflection. --- Mathematical analysis. --- Mathematical optimization. --- Mathematical physics. --- Mathematical problem. --- Mathematical proof. --- Mathematical theory. --- Mathematician. --- Melting. --- Monotonic function. --- Neumann boundary condition. --- Nonlinear system. --- Numerical analysis. --- Parameter space. --- Parameter. --- Partial derivative. --- Partial differential equation. --- Phase boundary. --- Phase transition. --- Potential flow. --- Pressure gradient. --- Quadratic function. --- Regularity theorem. --- Riemann problem. --- Scientific notation. --- Self-similarity. --- Special case. --- Specular reflection. --- Stefan problem. --- Structural stability. --- Subspace topology. --- Symmetrization. --- Theorem. --- Theory. --- Truncation error (numerical integration). --- Two-dimensional space. --- Unification (computer science). --- Variable (mathematics). --- Velocity potential. --- Vortex sheet. --- Vorticity. --- Wave equation. --- Weak convergence (Hilbert space). --- Weak solution.


Book
Seminar on minimal submanifolds
Author:
ISBN: 1400881439 Year: 1983 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The description for this book, Seminar On Minimal Submanifolds. (AM-103), Volume 103, will be forthcoming.

Keywords

Minimal submanifolds. --- A priori estimate. --- Analytic function. --- Banach space. --- Boundary (topology). --- Boundary value problem. --- Bounded set (topological vector space). --- Branch point. --- Cauchy–Riemann equations. --- Center manifold. --- Closed geodesic. --- Codimension. --- Coefficient. --- Cohomology. --- Compactness theorem. --- Comparison theorem. --- Configuration space. --- Conformal geometry. --- Conformal group. --- Conformal map. --- Continuous function. --- Cross product. --- Curve. --- Degeneracy (mathematics). --- Diffeomorphism. --- Differential form. --- Dirac operator. --- Discrete group. --- Divergence theorem. --- Eigenvalues and eigenvectors. --- Elementary proof. --- Equation. --- Existence theorem. --- Existential quantification. --- Exterior derivative. --- First variation. --- Free boundary problem. --- Fundamental group. --- Gauss map. --- Geodesic. --- Geometry. --- Group action. --- Hamiltonian mechanics. --- Harmonic function. --- Harmonic map. --- Hausdorff dimension. --- Hausdorff measure. --- Homotopy group. --- Homotopy. --- Hurewicz theorem. --- Hyperbolic 3-manifold. --- Hyperbolic manifold. --- Hyperbolic space. --- Hypersurface. --- Implicit function theorem. --- Infimum and supremum. --- Injective function. --- Inner automorphism. --- Isolated singularity. --- Isometry group. --- Isoperimetric problem. --- Klein bottle. --- Kleinian group. --- Limit set. --- Lipschitz continuity. --- Mapping class group. --- Maxima and minima. --- Maximum principle. --- Minimal surface of revolution. --- Minimal surface. --- Monotonic function. --- Möbius transformation. --- Norm (mathematics). --- Orthonormal basis. --- Parametric surface. --- Periodic function. --- Poincaré conjecture. --- Projection (linear algebra). --- Regularity theorem. --- Riemann surface. --- Riemannian manifold. --- Schwarz reflection principle. --- Second fundamental form. --- Semi-continuity. --- Simply connected space. --- Special case. --- Stein's lemma. --- Subalgebra. --- Subgroup. --- Submanifold. --- Subsequence. --- Support (mathematics). --- Symplectic manifold. --- Tangent space. --- Teichmüller space. --- Theorem. --- Trace (linear algebra). --- Uniformization. --- Uniqueness theorem. --- Variational principle. --- Yamabe problem.

Singular integrals and differentiability properties of functions
Author:
ISBN: 0691080798 1400883881 9780691080796 Year: 1970 Volume: 30 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Singular integrals are among the most interesting and important objects of study in analysis, one of the three main branches of mathematics. They deal with real and complex numbers and their functions. In this book, Princeton professor Elias Stein, a leading mathematical innovator as well as a gifted expositor, produced what has been called the most influential mathematics text in the last thirty-five years. One reason for its success as a text is its almost legendary presentation: Stein takes arcane material, previously understood only by specialists, and makes it accessible even to beginning graduate students. Readers have reflected that when you read this book, not only do you see that the greats of the past have done exciting work, but you also feel inspired that you can master the subject and contribute to it yourself. Singular integrals were known to only a few specialists when Stein's book was first published. Over time, however, the book has inspired a whole generation of researchers to apply its methods to a broad range of problems in many disciplines, including engineering, biology, and finance. Stein has received numerous awards for his research, including the Wolf Prize of Israel, the Steele Prize, and the National Medal of Science. He has published eight books with Princeton, including Real Analysis in 2005.

Keywords

Functions of real variables. --- Harmonic analysis. --- Singular integrals. --- Multiplicateurs (analyse mathématique) --- Multipliers (Mathematical analysis) --- Functional analysis --- Harmonic analysis. Fourier analysis --- Functions of real variables --- Harmonic analysis --- Singular integrals --- Fonctions de variables réelles --- Analyse harmonique --- Intégrales singulières --- Fonctions de plusieurs variables réelles --- Calcul différentiel --- Functions of several real variables --- Differential calculus --- 517.518.5 --- Integrals, Singular --- Integral operators --- Integral transforms --- Analysis (Mathematics) --- Functions, Potential --- Potential functions --- Banach algebras --- Calculus --- Mathematical analysis --- Mathematics --- Bessel functions --- Fourier series --- Harmonic functions --- Time-series analysis --- Real variables --- Functions of complex variables --- 517.518.5 Theory of the Fourier integral --- Theory of the Fourier integral --- A priori estimate. --- Analytic function. --- Banach algebra. --- Banach space. --- Basis (linear algebra). --- Bessel function. --- Bessel potential. --- Big O notation. --- Borel measure. --- Boundary value problem. --- Bounded function. --- Bounded operator. --- Bounded set (topological vector space). --- Bounded variation. --- Boundedness. --- Cartesian product. --- Change of variables. --- Characteristic function (probability theory). --- Characterization (mathematics). --- Commutative property. --- Complex analysis. --- Complex number. --- Continuous function (set theory). --- Continuous function. --- Convolution. --- Derivative. --- Difference "ient. --- Difference set. --- Differentiable function. --- Dimension (vector space). --- Dimensional analysis. --- Dirac measure. --- Dirichlet problem. --- Distribution function. --- Division by zero. --- Dot product. --- Dual space. --- Equation. --- Existential quantification. --- Family of sets. --- Fatou's theorem. --- Finite difference. --- Fourier analysis. --- Fourier series. --- Fourier transform. --- Function space. --- Green's theorem. --- Harmonic function. --- Hilbert space. --- Hilbert transform. --- Homogeneous function. --- Infimum and supremum. --- Integral transform. --- Interpolation theorem. --- Interval (mathematics). --- Linear map. --- Lipschitz continuity. --- Lipschitz domain. --- Locally integrable function. --- Marcinkiewicz interpolation theorem. --- Mathematical induction. --- Maximal function. --- Maximum principle. --- Mean value theorem. --- Measure (mathematics). --- Modulus of continuity. --- Multiple integral. --- Open set. --- Order of integration. --- Orthogonality. --- Orthonormal basis. --- Partial derivative. --- Partial differential equation. --- Partition of unity. --- Periodic function. --- Plancherel theorem. --- Pointwise. --- Poisson kernel. --- Polynomial. --- Real variable. --- Rectangle. --- Riesz potential. --- Riesz transform. --- Scientific notation. --- Sign (mathematics). --- Singular integral. --- Sobolev space. --- Special case. --- Splitting lemma. --- Subsequence. --- Subset. --- Summation. --- Support (mathematics). --- Theorem. --- Theory. --- Total order. --- Unit vector. --- Variable (mathematics). --- Zero of a function. --- Fonctions de plusieurs variables réelles --- Calcul différentiel --- Multiplicateurs (analyse mathématique)

Listing 1 - 10 of 11 << page
of 2
>>
Sort by