Listing 1 - 9 of 9 |
Sort by
|
Choose an application
This introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. In the experimental sciences and interdisciplinary research, data analysis has become an integral part of any scientific study. Issues such as judging the credibility of data, analyzing the data, evaluating the reliability of the obtained results and finally drawing the correct and appropriate conclusions from the results are vital. The text is primarily intended for undergraduate students in disciplines like business administration, the social sciences, medicine, politics, macroeconomics, etc. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R as well as supplementary material that will enable the reader to quickly adapt all methods to their own applications.
Statistics. --- Econometrics. --- Macroeconomics. --- Statistical Theory and Methods. --- Statistics for Business/Economics/Mathematical Finance/Insurance. --- Macroeconomics/Monetary Economics//Financial Economics. --- Mathematical statistics. --- Statistics for Business, Management, Economics, Finance, Insurance. --- Mathematics --- Statistical inference --- Statistics, Mathematical --- Statistics --- Probabilities --- Sampling (Statistics) --- Economics --- Economics, Mathematical --- Statistical analysis --- Statistical data --- Statistical methods --- Statistical science --- Econometrics --- Statistics . --- R (Computer program language). --- GNU-S (Computer program language) --- Domain-specific programming languages --- R (Computer program language)
Choose an application
Now in its second edition, this introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. This revised and extended edition features new chapters on logistic regression, simple random sampling, including bootstrapping, and causal inference. The text is primarily intended for undergraduate students in disciplines such as business administration, the social sciences, medicine, politics, and macroeconomics. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R, as well as supplementary material that will enable the reader to quickly adapt the methods to their own applications.
Statistics. --- Quantitative research. --- Statistics—Computer programs. --- Statistical Theory and Methods. --- Data Analysis and Big Data. --- Applied Statistics. --- Statistical Software. --- Estadística --- Econometria --- Macroeconomia --- R (Llenguatge de programació)
Choose an application
This introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. In the experimental sciences and interdisciplinary research, data analysis has become an integral part of any scientific study. Issues such as judging the credibility of data, analyzing the data, evaluating the reliability of the obtained results and finally drawing the correct and appropriate conclusions from the results are vital. The text is primarily intended for undergraduate students in disciplines like business administration, the social sciences, medicine, politics, macroeconomics, etc. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R as well as supplementary material that will enable the reader to quickly adapt all methods to their own applications.
Statistical science --- Macroeconomics --- Quantitative methods (economics) --- Mathematical statistics --- Business economics --- statistiek --- macro-economie --- econometrie --- gegevensanalyse --- statistisch onderzoek
Choose an application
Now in its second edition, this introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. This revised and extended edition features new chapters on logistic regression, simple random sampling, including bootstrapping, and causal inference. The text is primarily intended for undergraduate students in disciplines such as business administration, the social sciences, medicine, politics, and macroeconomics. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R, as well as supplementary material that will enable the reader to quickly adapt the methods to their own applications.
Statistical science --- Mathematical statistics --- statistiek --- statistisch onderzoek
Choose an application
Forest canopies --- Forest health --- Measurement. --- Monitoring
Choose an application
Now in its second edition, this introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. This revised and extended edition features new chapters on logistic regression, simple random sampling, including bootstrapping, and causal inference. The text is primarily intended for undergraduate students in disciplines such as business administration, the social sciences, medicine, politics, and macroeconomics. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R, as well as supplementary material that will enable the reader to quickly adapt the methods to their own applications.
Statistics. --- Quantitative research. --- Statistics—Computer programs. --- Statistical Theory and Methods. --- Data Analysis and Big Data. --- Applied Statistics. --- Statistical Software. --- Data analysis (Quantitative research) --- Exploratory data analysis (Quantitative research) --- Quantitative analysis (Research) --- Quantitative methods (Research) --- Research --- Statistical analysis --- Statistical data --- Statistical methods --- Statistical science --- Mathematics --- Econometrics
Choose an application
Das Fach Statistik gehört in vielen Fachrichtungen zum Grundstudium. Wegen des teilweise abstrakten und mathematisch begründeten Vorgehens haben Studenten häufig Probleme im Verständnis der statistischen Methoden. Das Arbeitsbuch ist eine Ergänzung zu den beiden Lehrbüchern von Helge Toutenburg Deskriptive Statistik und Induktive Statistik, deren voller Stoffumfang klausurrelevant für Haupt- und Nebenfachstudenten an deutschsprachigen Universitäten ist. Es ist eine effektive Lernhilfe für die Vorlesungen Statistik I und II. Jedes Kapitel des Arbeitsbuches besteht aus einem anschaulich geschriebenen, überschaubaren Lehrteil, der den Studenten die wichtigsten Zusammenhänge anhand klar strukturierter Beispiele näher bringt, sowie einem ausführlichen und gut kommentierten Aufgabenteil. Das didaktische Anliegen des Buches wird durch eine Vielzahl neuer und origineller Beispiele unterstützt. Datensätze im Internet können zusätzlich zur Übung allgemein und zu speziellen Aufgaben mit SPSS genutzt werden.
Choose an application
Die Statistik gehört in vielen Fachrichtungen zum Grundstudium.Wegen der oft abstrakten und mathematisch begründeten Herleitung haben Studenten häufig Probleme im Verständnis statistischer Methoden. Das Arbeitsbuch ist eine Ergänzung zu den beiden Lehrbüchern von Helge Toutenburg und Christian Heumann Deskriptive Statistik und Induktive Statistik und dient als effektive Lernhilfe. Jedes Kapitel besteht aus einem anschaulich geschriebenen, überschaubaren Lehrteil, der den Studenten die wichtigsten Zusammenhänge anhand klar strukturierter Beispiele näher bringt, sowie einem ausführlichen und gut kommentierten Aufgabenteil.Das didaktische Anliegen des Buches wird durch eine Vielzahl neuer und origineller Beispiele und Aufgaben unterstützt. Ein eigenständiges Kapitel mit kommentierten Multiple-Choice-Aufgaben sowie ein Kapitel zur schrittweisen, eigenständigen Analyse eines komplexen Datensatzes aus der Praxis wurden neu aufgenommen und gestatten einen alternativen Blickwinkel auf den Stoff.
Choose an application
Six Sigma ist im deutschsprachigen Raum stark im Kommen. Doch was ist Six Sigma? Six Sigma ist eine wissenschaftliche Managementmethode mit dem Ziel, Kundenbedürfnisse vollständig und profitabel zu erfüllen. Mit Hilfe von Six Sigma werden Prozesse optimiert, aus Kundensicht relevante Fehler reduziert und die Profitabilität des Unternehmens gesteigert. In jeder Phase eines Six-Sigma-Projektes werden statistische Methoden angewendet, um auf Basis objektiver Daten fundierte und faktenbasierte Entscheidungen treffen zu können. „Six Sigma – Methoden und Statistik für die Praxis“ vereint praxisnahes Expertenwissen aus Anwendung, Consulting und Wissenschaft. Es verfügt über zwei Schwerpunkte: DMAIC – die Six-Sigma-Methode zur Verbesserung von Prozessen – sowie Statistik. Beide Themen sind wissenschaftlich fundiert, anwendungsorientiert sowie durch Beispiele miteinander verknüpft. Das Buch richtet sich an alle, die Six Sigma bei der Bearbeitung von Projekten oder in Lehrveranstaltungen einsetzen wollen.
Management. --- Organization. --- Planning. --- Six sigma (Quality control standard) --- Total quality management.
Listing 1 - 9 of 9 |
Sort by
|