Listing 1 - 10 of 10 |
Sort by
|
Choose an application
In 2019, we sent out a call for submissions to a Special Issue of Marine Drugs entitled “Marine Chitin 2019”, and we are pleased that this issue has now been published. Over 16 high-impact papers were included in this issue, which we now plan to publish as a book. In addition, we now seek to publish a further Special Issue of Marine Drugs, “Marine Chitin 2020–2021”. As before, we plan to produce an authoritative and exciting issue that will encompass breakthroughs in scientific and industrial chitin and chitosan research. Significant advances in chitin and chitosan research have been made since the 1970s, and current overviews in recent publications involving chitin and chitosan research advances are in need of an update.
chitosan hydrogel --- chitosan --- biotechnology --- RAW264.7 macrophage --- ?-glucosidase inhibitor --- bromotyrosines --- layer-by-layer film --- amphiphilic polymer --- conjugation --- marine resources --- antioxidant activity --- chitooligosaccharides --- methylene blue --- nanoparticles --- bulk density --- Eudragit® S100 --- lytic polysaccharide monooxygenase --- chitosan oleate salt --- curcumin --- RAW 264.7 cells --- antioxidant --- crude oil --- ball milling --- anti-inflammatory action --- enzymatic modification --- dissolution --- vaginal infections --- Hausner ratio --- crushing strength --- Staphylococcus epidermidis --- mucoadhesive film --- Caco-2 cell culture --- chitosan lactate --- 2D correlation spectroscopy --- chitosan citrate --- direct compression --- chitosan oligomers --- chitin deacetylase --- Pseudomonas aeruginosa --- collagen --- blood --- express method --- sodium carbonate --- HIV sexual transmission --- streptomycin --- antibacterial activity --- pork sausage --- nanocomposites --- chitosanase --- Clostridium perfringens --- chitinase --- mucoadhesion --- chitosan oligosaccharides --- chitosan tartrate --- Staphylococcus aureus --- immunostimulatory activity --- derivatization --- pH responsive release --- soluble chitosan complex --- chitin --- polymer film --- compression work --- wound treatment --- biofilms --- roller compaction --- mitogen-activated protein kinases (MAPK) --- Paenibacillus --- chitooligosaccharide --- mechanical property --- protease --- Polybius henslowii --- scaffolds --- electrospinning --- chitosan-coated liposomes --- phosphoinositide 3-kinases (PI3K)/Akt --- cytotoxicity --- polymorph --- vaginal preexposure prophylaxis --- Aplysina archeri --- antifungal activity --- PLGA --- Kawakita analysis --- marine sponges --- Tenofovir controlled release --- nile red
Choose an application
As a result of our call in 2014 for submissions to a Special Issue, Advances in Marine Chitin and Chitosan in Marine Drugs, we are now pleased to tell you that this issue has been published. Twenty high class papers were included in this issue, which we now plan to publish as a book. In addition we now seek to publish a further Special Issue, Advances in Marine Chitin and Chitosan II, 2017, in Marine Drugs. As before, we plan to produce a strong, very exciting issue that will encompass breakthroughs in high value, scientific and industrial chitin and chitosan research. Despite significant advances in chitin and chitosan research since the 1970s, current overviews in recent publications involving chitin and chitosan research advances need reporting.
Marine biology. --- Biological oceanography --- Ocean biology --- Oceanic biology --- Sea biology --- Aquatic biology --- Marine sciences
Choose an application
Annotation Recently, biomass-based polymers from renewable resources have received increasing focus owing to the depletion of petroleum resources. Natural polysaccharides such as cellulose, hemicellulose, and starch are among the candidates from natural resources for biomass polysaccharide products including bioplastics. Although several kinds of neutral or anionic polysaccharides such as chitin, alginic acid, hyaluronic acid, heparin, and chondroitin sulfate exist in nature, natural cationic polysaccharides are quite limited. Chitin is second only to cellulose as the most natural abundant polysaccharide in the world. Chitosan, the product from the N-deacetylatation of chitin, appears to be the only natural cationic polysaccharide. Therefore, chitin and chitosan due to their unique properties are expected to continue to offer a vast number of possible applications for not only chemical or industrial use, but also biomedicine. The research history on chitins, one of the most major and abundant natural polysaccharides on earth, started around 1970. Since the 1980s, chitin and chitosan research (including D-glucosamine, N-acetyl-D-glucosamine, and their oligomers) has progressed significantly over several stages in both fundamental research and industrial fields.
Choose an application
As a result of our call in 2014 for submissions to a Special Issue, Advances in Marine Chitin and Chitosan in Marine Drugs, we are now pleased to tell you that this issue has been published. Twenty high class papers were included in this issue, which we now plan to publish as a book. In addition we now seek to publish a further Special Issue, Advances in Marine Chitin and Chitosan II, 2017, in Marine Drugs. As before, we plan to produce a strong, very exciting issue that will encompass breakthroughs in high value, scientific and industrial chitin and chitosan research. Despite significant advances in chitin and chitosan research since the 1970s, current overviews in recent publications involving chitin and chitosan research advances need reporting.
Choose an application
Biopolymers --- Polysaccharides. --- Polysaccharides --- Aquatic resources. --- Pharmacology. --- Derivatives. --- Therapeutic use.
Choose an application
Annotation Recently, biomass-based polymers from renewable resources have received increasing focus owing to the depletion of petroleum resources. Natural polysaccharides such as cellulose, hemicellulose, and starch are among the candidates from natural resources for biomass polysaccharide products including bioplastics. Although several kinds of neutral or anionic polysaccharides such as chitin, alginic acid, hyaluronic acid, heparin, and chondroitin sulfate exist in nature, natural cationic polysaccharides are quite limited. Chitin is second only to cellulose as the most natural abundant polysaccharide in the world. Chitosan, the product from the N-deacetylatation of chitin, appears to be the only natural cationic polysaccharide. Therefore, chitin and chitosan due to their unique properties are expected to continue to offer a vast number of possible applications for not only chemical or industrial use, but also biomedicine. The research history on chitins, one of the most major and abundant natural polysaccharides on earth, started around 1970. Since the 1980s, chitin and chitosan research (including D-glucosamine, N-acetyl-D-glucosamine, and their oligomers) has progressed significantly over several stages in both fundamental research and industrial fields.
Choose an application
As a result of our call in 2014 for submissions to a Special Issue, Advances in Marine Chitin and Chitosan in Marine Drugs, we are now pleased to tell you that this issue has been published. Twenty high class papers were included in this issue, which we now plan to publish as a book. In addition we now seek to publish a further Special Issue, Advances in Marine Chitin and Chitosan II, 2017, in Marine Drugs. As before, we plan to produce a strong, very exciting issue that will encompass breakthroughs in high value, scientific and industrial chitin and chitosan research. Despite significant advances in chitin and chitosan research since the 1970s, current overviews in recent publications involving chitin and chitosan research advances need reporting.
Choose an application
As a result of our call in 2014 for submissions to a Special Issue, Advances in Marine Chitin and Chitosan in Marine Drugs, we are now pleased to tell you that this issue has been published. Twenty high class papers were included in this issue, which we now plan to publish as a book. In addition we now seek to publish a further Special Issue, Advances in Marine Chitin and Chitosan II, 2017, in Marine Drugs. As before, we plan to produce a strong, very exciting issue that will encompass breakthroughs in high value, scientific and industrial chitin and chitosan research. Despite significant advances in chitin and chitosan research since the 1970s, current overviews in recent publications involving chitin and chitosan research advances need reporting.
Choose an application
Biopolymers --- Polysaccharides. --- Polysaccharides --- Aquatic resources. --- Pharmacology. --- Derivatives. --- Therapeutic use.
Choose an application
Annotation Recently, biomass-based polymers from renewable resources have received increasing focus owing to the depletion of petroleum resources. Natural polysaccharides such as cellulose, hemicellulose, and starch are among the candidates from natural resources for biomass polysaccharide products including bioplastics. Although several kinds of neutral or anionic polysaccharides such as chitin, alginic acid, hyaluronic acid, heparin, and chondroitin sulfate exist in nature, natural cationic polysaccharides are quite limited. Chitin is second only to cellulose as the most natural abundant polysaccharide in the world. Chitosan, the product from the N-deacetylatation of chitin, appears to be the only natural cationic polysaccharide. Therefore, chitin and chitosan due to their unique properties are expected to continue to offer a vast number of possible applications for not only chemical or industrial use, but also biomedicine. The research history on chitins, one of the most major and abundant natural polysaccharides on earth, started around 1970. Since the 1980s, chitin and chitosan research (including D-glucosamine, N-acetyl-D-glucosamine, and their oligomers) has progressed significantly over several stages in both fundamental research and industrial fields.
Listing 1 - 10 of 10 |
Sort by
|