Listing 1 - 5 of 5 |
Sort by
|
Choose an application
The fifteenth British Combinatorial Conference took place in July 1995 at the University of Stirling. This volume consists of the papers presented by the invited lecturers at the meeting, and provides an up-to-date survey of current research activity in several areas of combinatorics and its applications. These include distance-regular graphs, combinatorial designs, coding theory, spectra of graphs, and randomness and computation. The articles give an overview of combinatorics that will be extremely useful to both mathematicians and computer scientists.
Choose an application
Graph theory --- Spectral theory (Mathematics) --- Graph theory. --- Spectral theory (Mathematics).
Choose an application
Line graphs have the property that their least eigenvalue is greater than or equal to -2, a property shared by generalized line graphs and a finite number of so-called exceptional graphs. This book deals with all these families of graphs in the context of their spectral properties. The authors discuss the three principal techniques that have been employed, namely 'forbidden subgraphs', 'root systems' and 'star complements'. They bring together the major results in the area, including the recent construction of all the maximal exceptional graphs. Technical descriptions of these graphs are included in the appendices, while the bibliography provides over 250 references. This will be an important resource for all researchers with an interest in algebraic graph theory.
Eigenvalues. --- Graph theory. --- Graph theory --- Eigenvalues --- Matrices --- Graphs, Theory of --- Theory of graphs --- Combinatorial analysis --- Topology --- Extremal problems
Choose an application
Current research on the spectral theory of finite graphs may be seen as part of a wider effort to forge closer links between algebra and combinatorics (in particular between linear algebra and graph theory).This book describes how this topic can be strengthened by exploiting properties of the eigenspaces of adjacency matrices associated with a graph. The extension of spectral techniques proceeds at three levels: using eigenvectors associated with an arbitrary labelling of graph vertices, using geometrical invariants of eigenspaces such as graph angles and main angles, and introducing certain kinds of canonical eigenvectors by means of star partitions and star bases. One objective is to describe graphs by algebraic means as far as possible, and the book discusses the Ulam reconstruction conjecture and the graph isomorphism problem in this context. Further problems of graph reconstruction and identification are used to illustrate the importance of graph angles and star partitions in relation to graph structure. Specialists in graph theory will welcome this treatment of important new research.
Graph theory. --- Spectral theory (Mathematics) --- Functional analysis --- Hilbert space --- Measure theory --- Transformations (Mathematics) --- Graph theory --- Graphs, Theory of --- Theory of graphs --- Combinatorial analysis --- Topology --- Extremal problems
Choose an application
This introductory text explores the theory of graph spectra: a topic with applications across a wide range of subjects, including computer science, quantum chemistry and electrical engineering. The spectra examined here are those of the adjacency matrix, the Seidel matrix, the Laplacian, the normalized Laplacian and the signless Laplacian of a finite simple graph. The underlying theme of the book is the relation between the eigenvalues and structure of a graph. Designed as an introductory text for graduate students, or anyone using the theory of graph spectra, this self-contained treatment assumes only a little knowledge of graph theory and linear algebra. The authors include many developments in the field which arise as a result of rapidly expanding interest in the area. Exercises, spectral data and proofs of required results are also provided. The end-of-chapter notes serve as a practical guide to the extensive bibliography of over 500 items.
Graph theory. --- Matrices. --- Algebra, Matrix --- Cracovians (Mathematics) --- Matrix algebra --- Matrixes (Algebra) --- Algebra, Abstract --- Algebra, Universal --- Graph theory --- Graphs, Theory of --- Theory of graphs --- Combinatorial analysis --- Topology --- Extremal problems
Listing 1 - 5 of 5 |
Sort by
|