Narrow your search

Library

KU Leuven (2)


Resource type

book (1)

dissertation (1)


Language

English (2)


Year
From To Submit

2016 (1)

2012 (1)

Listing 1 - 2 of 2
Sort by

Book
Magnetohydrodynamic modeling of large-amplitude waves in the solar corona
Author:
Year: 2012 Publisher: Helsingin yliopisto Helsingfors universitet University of Helsinki

Loading...
Export citation

Choose an application

Bookmark

Abstract

Solar eruptions are a consequence of the complex dynamics occurring in the tenuous, hot magnetized plasma that characterizes the solar corona. From a socio-economic viewpoint, solar eruptions can be argued to be the most important manifestation of the magnetic activity of the Sun due to their role as the main drivers of space weather, i.e., conditions in space that can have an adverse impact on space- as well as ground-based technologies such as telecommunication, electric power systems and satellite navigation. The launch of new space-based solar observatories during the past two decades has resulted in a dramatic improvement of the instrumentation monitoring the inner heliosphere. In spite of the advances in the observational capabilities, the physics of the solar eruptions as well as the nature of the various transient large-scale coronal phenomena observationally associated with the eruptions remain elusive. Constructing models capable of simulating the coronal and heliospheric^ dynamics is a viable path for gaining a more complete understanding of these phenomena. This thesis is concerned with developing a simulation tool based on the magnetohydrodynamic (MHD) description of plasmas and employing it for studying the characteristics of large-scale waves and shocks launched into the solar corona by the lift-off of a solar eruption such as a coronal mass ejection (CME). A particular focus is on discussing the role of large-amplitude waves in producing transient phenomena such as EIT waves and solar energetic particle (SEP) events that are known to appear in conjunction with CMEs. A suite of MHD models of the solar corona are constructed that allow the study of the coronal dynamics in varying environments at several stages of the eruption. For this purpose, novel robust numerical methods for solving the equations of magnetohydrodynamics in orthogonal curvilinear geometries in multiple dimensions are derived, forming the basis of the numerical simulation tool deve lop I det tunna och heta magnetiserade plasmat, som kännetecknar solens korona, uppkommer soleruptioner som en följd av den komplicerade dynamiken i plasmat. I och med eruptionernas roll som huvudorsakaren av rymdvädret kan man ur en socioekonomisk synvinkel anse att soleruptioner är den viktigaste manifestationen av solens magnetiska aktivitet. Med begreppet rymdväder förstås sådana förhållanden i rymden som negativt kan påverka teknologiska system såväl i rymden som på jorden, till exempel telekommunikation, elsystem och satellitnavigering. I och med att nya rymdbaserade solobservatorier tagits i bruk de senaste två decennierna har instrumentationen som observerar den inre heliosfären förbättrats dramatiskt. Trots framstegen i observationsmöjligheterna är fysiken bakom soleruptionerna samt karaktären av diverse tillfälliga storskaliga fenomen som observeras i koronan i samband med eruptionerna fortfarande svårfångad. Ett sätt att uppnå en mera komplett först åelse av dessa fenomen är att konstruera modeller som kan simulera koronans och heliosfärens dynamik. I denna avhandling har ett simulationsverktyg utvecklats och tillämpats för att studera globala vågor och chockvågor i solens korona orsakade av soleruptioner så som koronamassutkast. Simulationsverktyget grundar sig på den magnetohydrodynamiska (MHD) beskrivningen av plasmor. Ett bärande tema är att diskutera rollen av dessa vågor i uppkomsten av fenomen som observeras i samband med koronamassutkast, exempelvis så kallade EIT vågor samt utbrott av energetiska partiklar. En svit av MHD modeller av solens korona har konstruerats i avhandlingen. Modellerna möjliggör studiet av koronans dynamik i varierande förhållanden och olika skeden av eruptionen. För detta ändamål har numeriska metoder som löser magnetohydrodynamikens ekvationer i ortogonala kroklinjiga geometrier i flera dimensioner utvecklats. Dessa numeriska metoder utgör grunden för det nya simulationsverk tyget. Resultaten av modelleringen visar att en dynami


Dissertation
Extrapolation of the Solar Coronal Field by Means of an Optimization Method

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Sun is a highly dynamical object, producing energetic phenomena like bright solar flares and violent eruptions called coronal mass ejections (CMEs). During these eruptions, the Sun hurls a billion-ton cloud of charged particles into space. When striking Earth, these eruption may, among other things, disrupt satellites, knock out power systems, and endanger human life in space. It is thus crucial to understand and predict these CMEs and their effects on the environmental conditions in outer space. This is only possible if the mechanism that creates these eruptive events is understood well. There is a consensus in the heliophysics community that solar eruptive events like flares and CMEs are powered by the magnetic field in the upper solar atmosphere, i.e., in the solar corona. Understanding CMEs and flares requires thus knowledge about the structure and evolution of the coronal magnetic field. This turns out to be a very challenging task, since it requires knowledge of a large variety of complex physical processes. A major problem is that it is very hard to measure the magnetic field of the corona directly. Instead, most of our measurements provide data about the magnetic field in the lower solar atmosphere, i.e., in the photosphere. As a consequence, models need to be developed to reconstruct the coronal magnetic field, starting from the measurements of the photospheric magnetic field. In this thesis, we use such a model to study the three dimensional structure of the coronal magnetic field above solar active regions. These are regions that show enhanced magnetic activity, from which CMEs and flares are often observed erupting. This thesis consists of two major parts. The first part is devoted to testing a numerical method that tries to reconstruct the coronal magnetic field. The performance of this method is tested by using some analytical magnetic field models of solar active regions. We find that the method is able to reconstruct the magnetic fields reasonably well. In the second part of the thesis, this reconstruction method is used to study the magnetic field of a specific active region of the Sun. This active region was visible on the solar disk from 19 June to 25 June, 2015. During this period, several flares and CMEs erupted from this active region. We find that the reconstructed magnetic field corresponds well with the observations of the active region, although there is still room for improvement.

Keywords

Listing 1 - 2 of 2
Sort by