Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Condition monitoring of machinery is one of the most important aspects of many modern industries. With the rapid advancement of science and technology, machines are becoming increasingly complex. Moreover, an exponential increase of demand is leading an increasing requirement of machine output. As a result, in most modern industries, machines have to work for 24 hours a day. All these factors are leading to the deterioration of machine health in a higher rate than before. Breakdown of the key components of a machine such as bearing, gearbox or rollers can cause a catastrophic effect both in terms of financial and human costs. In this perspective, it is important not only to detect the fault at its earliest point of inception but necessary to design the overall monitoring process, such as fault classification, fault severity assessment and remaining useful life (RUL) prediction for better planning of the maintenance schedule. Information theory is one of the pioneer contributions of modern science that has evolved into various forms and algorithms over time. Due to its ability to address the non-linearity and non-stationarity of machine health deterioration, it has become a popular choice among researchers. Information theory is an effective technique for extracting features of machines under different health conditions. In this context, this book discusses the potential applications, research results and latest developments of information theory-based condition monitoring of machineries.
Technology: general issues --- History of engineering & technology --- fault detection --- deep learning --- transfer learning --- anomaly detection --- bearing --- wind turbines --- misalignment --- fault diagnosis --- information fusion --- improved artificial bee colony algorithm --- LSSVM --- D–S evidence theory --- optimal bandwidth --- kernel density estimation --- JS divergence --- domain adaptation --- partial transfer --- subdomain --- rotating machinery --- gearbox --- signal interception --- peak extraction --- cubic spline interpolation envelope --- combined fault diagnosis --- empirical wavelet transform --- grey wolf optimizer --- low pass FIR filter --- support vector machine --- satellite momentum wheel --- Huffman-multi-scale entropy (HMSE) --- support vector machine (SVM) --- adaptive particle swarm optimization (APSO) --- rail surface defect detection --- machine vision --- YOLOv4 --- MobileNetV3 --- multi-source heterogeneous fusion --- n/a --- D-S evidence theory
Choose an application
Condition monitoring of machinery is one of the most important aspects of many modern industries. With the rapid advancement of science and technology, machines are becoming increasingly complex. Moreover, an exponential increase of demand is leading an increasing requirement of machine output. As a result, in most modern industries, machines have to work for 24 hours a day. All these factors are leading to the deterioration of machine health in a higher rate than before. Breakdown of the key components of a machine such as bearing, gearbox or rollers can cause a catastrophic effect both in terms of financial and human costs. In this perspective, it is important not only to detect the fault at its earliest point of inception but necessary to design the overall monitoring process, such as fault classification, fault severity assessment and remaining useful life (RUL) prediction for better planning of the maintenance schedule. Information theory is one of the pioneer contributions of modern science that has evolved into various forms and algorithms over time. Due to its ability to address the non-linearity and non-stationarity of machine health deterioration, it has become a popular choice among researchers. Information theory is an effective technique for extracting features of machines under different health conditions. In this context, this book discusses the potential applications, research results and latest developments of information theory-based condition monitoring of machineries.
fault detection --- deep learning --- transfer learning --- anomaly detection --- bearing --- wind turbines --- misalignment --- fault diagnosis --- information fusion --- improved artificial bee colony algorithm --- LSSVM --- D–S evidence theory --- optimal bandwidth --- kernel density estimation --- JS divergence --- domain adaptation --- partial transfer --- subdomain --- rotating machinery --- gearbox --- signal interception --- peak extraction --- cubic spline interpolation envelope --- combined fault diagnosis --- empirical wavelet transform --- grey wolf optimizer --- low pass FIR filter --- support vector machine --- satellite momentum wheel --- Huffman-multi-scale entropy (HMSE) --- support vector machine (SVM) --- adaptive particle swarm optimization (APSO) --- rail surface defect detection --- machine vision --- YOLOv4 --- MobileNetV3 --- multi-source heterogeneous fusion --- n/a --- D-S evidence theory
Choose an application
Condition monitoring of machinery is one of the most important aspects of many modern industries. With the rapid advancement of science and technology, machines are becoming increasingly complex. Moreover, an exponential increase of demand is leading an increasing requirement of machine output. As a result, in most modern industries, machines have to work for 24 hours a day. All these factors are leading to the deterioration of machine health in a higher rate than before. Breakdown of the key components of a machine such as bearing, gearbox or rollers can cause a catastrophic effect both in terms of financial and human costs. In this perspective, it is important not only to detect the fault at its earliest point of inception but necessary to design the overall monitoring process, such as fault classification, fault severity assessment and remaining useful life (RUL) prediction for better planning of the maintenance schedule. Information theory is one of the pioneer contributions of modern science that has evolved into various forms and algorithms over time. Due to its ability to address the non-linearity and non-stationarity of machine health deterioration, it has become a popular choice among researchers. Information theory is an effective technique for extracting features of machines under different health conditions. In this context, this book discusses the potential applications, research results and latest developments of information theory-based condition monitoring of machineries.
Technology: general issues --- History of engineering & technology --- fault detection --- deep learning --- transfer learning --- anomaly detection --- bearing --- wind turbines --- misalignment --- fault diagnosis --- information fusion --- improved artificial bee colony algorithm --- LSSVM --- D-S evidence theory --- optimal bandwidth --- kernel density estimation --- JS divergence --- domain adaptation --- partial transfer --- subdomain --- rotating machinery --- gearbox --- signal interception --- peak extraction --- cubic spline interpolation envelope --- combined fault diagnosis --- empirical wavelet transform --- grey wolf optimizer --- low pass FIR filter --- support vector machine --- satellite momentum wheel --- Huffman-multi-scale entropy (HMSE) --- support vector machine (SVM) --- adaptive particle swarm optimization (APSO) --- rail surface defect detection --- machine vision --- YOLOv4 --- MobileNetV3 --- multi-source heterogeneous fusion
Choose an application
This volume gathers the latest advances, innovations and applications in the field of condition monitoring, plant maintenance and reliability, as presented by leading international researchers and engineers at the 6th International Conference on Maintenance Engineering and the 2021 conference of the Efficiency and Performance Engineering Network (IncoME-VI TEPEN 2021), held in Tianjin, China on October 20-23, 2021. Topics include vibro-acoustics monitoring, condition-based maintenance, sensing and instrumentation, machine health monitoring, maintenance auditing and organization, non-destructive testing, reliability, asset management, condition monitoring, life-cycle cost optimisation, prognostics and health management, maintenance performance measurement, manufacturing process monitoring, and robot-based monitoring and diagnostics. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.
Methodology of economics --- Machine elements --- Applied physical engineering --- Engineering sciences. Technology --- Production management --- Business management --- Business economics --- financieel management --- toegepaste mechanica --- productie --- machines --- ingenieurswetenschappen
Choose an application
Listing 1 - 5 of 5 |
Sort by
|