Listing 1 - 6 of 6 |
Sort by
|
Choose an application
This comprehensive textbook on the field programmable gate array (FPGA) covers its history, fundamental knowledge, architectures, device technologies, computer-aided design technologies, design tools, examples of application, and future trends. Programmable logic devices represented by FPGAs have been rapidly developed in recent years and have become key electronic devices used in most IT products. This book provides both complete introductions suitable for students and beginners, and high-level techniques useful for engineers and researchers in this field. Differently developed from usual integrated circuits, the FPGA has unique structures, design methodologies, and application techniques. Allowing programming by users, the device can dramatically reduce the rising cost of development in advanced semiconductor chips. The FPGA is now driving the most advanced semiconductor processes and is an all-in-one platform combining memory, CPUs, and various peripheral interfaces. This book introduces the FPGA from various aspects for readers of different levels. Novice learners can acquire a fundamental knowledge of the FPGA, including its history, from Chapter 1; the first half of Chapter 2; and Chapter 4. Professionals who are already familiar with the device will gain a deeper understanding of the structures and design methodologies from Chapters 3 and 5. Chapters 6–8 also provide advanced techniques and cutting-edge applications and trends useful for professionals. Although the first parts are mainly suitable for students, the advanced sections of the book will be valuable for professionals in acquiring an in-depth understanding of the FPGA to maximize the performance of the device.
Field programmable gate arrays --- Design and construction. --- Field programmable logic arrays --- FPGAs --- Gate array circuits --- Programmable logic devices --- Logic design. --- Systems engineering. --- Electronics. --- Logic Design. --- Circuits and Systems. --- Electronic Circuits and Devices. --- Electronics and Microelectronics, Instrumentation. --- Electrical engineering --- Physical sciences --- Engineering systems --- System engineering --- Engineering --- Industrial engineering --- System analysis --- Design, Logic --- Design of logic systems --- Digital electronics --- Electronic circuit design --- Logic circuits --- Machine theory --- Switching theory --- Design and construction --- Electronic circuits. --- Microelectronics. --- Microminiature electronic equipment --- Microminiaturization (Electronics) --- Electronics --- Microtechnology --- Semiconductors --- Miniature electronic equipment --- Electron-tube circuits --- Electric circuits --- Electron tubes
Choose an application
This comprehensive textbook on the field programmable gate array (FPGA) covers its history, fundamental knowledge, architectures, device technologies, computer-aided design technologies, design tools, examples of application, and future trends. Programmable logic devices represented by FPGAs have been rapidly developed in recent years and have become key electronic devices used in most IT products. This book provides both complete introductions suitable for students and beginners, and high-level techniques useful for engineers and researchers in this field. Differently developed from usual integrated circuits, the FPGA has unique structures, design methodologies, and application techniques. Allowing programming by users, the device can dramatically reduce the rising cost of development in advanced semiconductor chips. The FPGA is now driving the most advanced semiconductor processes and is an all-in-one platform combining memory, CPUs, and various peripheral interfaces. This book introduces the FPGA from various aspects for readers of different levels. Novice learners can acquire a fundamental knowledge of the FPGA, including its history, from Chapter 1; the first half of Chapter 2; and Chapter 4. Professionals who are already familiar with the device will gain a deeper understanding of the structures and design methodologies from Chapters 3 and 5. Chapters 6–8 also provide advanced techniques and cutting-edge applications and trends useful for professionals. Although the first parts are mainly suitable for students, the advanced sections of the book will be valuable for professionals in acquiring an in-depth understanding of the FPGA to maximize the performance of the device.
Logic --- Electronics --- Electrical engineering --- Applied physical engineering --- ontwerpen --- elektronica --- ingenieurswetenschappen --- elektrische circuits
Choose an application
Choose an application
Recon?gurable computing (RC) systems have generated considerable interest in the embedded and high-performance computing communities over the past two decades, with ?eld programmable gate arrays (FPGAs) as the leading techn- ogy at the helm of innovation in this discipline. Achieving orders of magnitude performance and power improvements using FPGAs over traditional microp- cessorsis not uncommon for well-suitedapplications. But even with two decades of research and technological advances, FPGA design still presents a subst- tial challenge and often necessitates hardware design expertise to exploit its true potential. Although the challenges to address the design productivity - sues are steep, the promise and the potential of the RC technology in terms of performance, power, size, and versatility continue to attract application design engineers and RC researchers alike. The International Symposium on Applied Recon?gurable Computing (ARC) aims to bring together researchers and practitioners of RC systems with an emphasis on practical applications and design methodologies of this promising technology. This year's ARC symposium (The sixth ARC symposium) was held in Bangkok, Thailand during March 17-19, 2010, and attracted papers in three primary focus areas:RC applications, RC architectures, and RC design meth- ologies.
Complex analysis --- Computer science --- Programming --- Computer architecture. Operating systems --- Computer. Automation --- complexe analyse (wiskunde) --- computers --- computerbesturingssystemen --- programmeren (informatica) --- software engineering --- algoritmen --- computernetwerken
Choose an application
The 5th International Symposium on High Performance Computing (ISHPC–V) was held in Odaiba, Tokyo, Japan, October 20–22, 2003. The symposium was thoughtfully planned, organized, and supported by the ISHPC Organizing C- mittee and its collaborating organizations. The ISHPC-V program included two keynote speeches, several invited talks, two panel discussions, and technical sessions covering theoretical and applied research topics in high–performance computing and representing both academia and industry. One of the regular sessions highlighted the research results of the ITBL project (IT–based research laboratory, http://www.itbl.riken.go.jp/). ITBL is a Japanese national project started in 2001 with the objective of re- izing a virtual joint research environment using information technology. ITBL aims to connect 100 supercomputers located in main Japanese scienti?c research laboratories via high–speed networks. A total of 58 technical contributions from 11 countries were submitted to ISHPC-V. Each paper received at least three peer reviews. After a thorough evaluation process, the program committee selected 14 regular (12-page) papers for presentation at the symposium. In addition, several other papers with fav- able reviews were recommended for a poster session presentation. They are also included in the proceedings as short (8-page) papers. Theprogramcommitteegaveadistinguishedpaperawardandabeststudent paper award to two of the regular papers. The distinguished paper award was given for “Code and Data Transformations for Improving Shared Cache P- formance on SMT Processors” by Dimitrios S. Nikolopoulos. The best student paper award was given for “Improving Memory Latency Aware Fetch Policies for SMT Processors” by Francisco J. Cazorla.
High performance computing --- Computer Science --- Engineering & Applied Sciences --- Computer science. --- Microprocessors. --- Computer programming. --- Software engineering. --- Algorithms. --- Computer science --- Computer simulation. --- Computer Science. --- Processor Architectures. --- Programming Techniques. --- Software Engineering. --- Algorithm Analysis and Problem Complexity. --- Mathematics of Computing. --- Simulation and Modeling. --- Mathematics. --- Computer software. --- Computer modeling --- Computer models --- Modeling, Computer --- Models, Computer --- Simulation, Computer --- Electromechanical analogies --- Mathematical models --- Simulation methods --- Model-integrated computing --- Software, Computer --- Computer systems --- Computer software engineering --- Engineering --- Informatics --- Science --- Computer science—Mathematics. --- Algorism --- Algebra --- Arithmetic --- Computers --- Electronic computer programming --- Electronic data processing --- Electronic digital computers --- Programming (Electronic computers) --- Coding theory --- Minicomputers --- Foundations --- Programming
Choose an application
Recon?gurable computing (RC) systems have generated considerable interest in the embedded and high-performance computing communities over the past two decades, with ?eld programmable gate arrays (FPGAs) as the leading techn- ogy at the helm of innovation in this discipline. Achieving orders of magnitude performance and power improvements using FPGAs over traditional microp- cessorsis not uncommon for well-suitedapplications. But even with two decades of research and technological advances, FPGA design still presents a subst- tial challenge and often necessitates hardware design expertise to exploit its true potential. Although the challenges to address the design productivity - sues are steep, the promise and the potential of the RC technology in terms of performance, power, size, and versatility continue to attract application design engineers and RC researchers alike. The International Symposium on Applied Recon?gurable Computing (ARC) aims to bring together researchers and practitioners of RC systems with an emphasis on practical applications and design methodologies of this promising technology. This year's ARC symposium (The sixth ARC symposium) was held in Bangkok, Thailand during March 17-19, 2010, and attracted papers in three primary focus areas:RC applications, RC architectures, and RC design meth- ologies.
Complex analysis --- Computer science --- Programming --- Computer architecture. Operating systems --- Computer. Automation --- complexe analyse (wiskunde) --- computers --- computerbesturingssystemen --- programmeren (informatica) --- software engineering --- algoritmen --- computernetwerken
Listing 1 - 6 of 6 |
Sort by
|