Listing 1 - 10 of 14 | << page >> |
Sort by
|
Choose an application
Content-Based Image Classification: Efficient Machine Learning Using Robust Feature Extraction Techniques is a comprehensive guide to research with invaluable image data. Social Science Research Network has revealed that 65% of people are visual learners. Research data provided by Hyerle (2000) has clearly shown 90% of information in the human brain is visual. Thus, it is no wonder that visual information processing in the brain is 60,000 times faster than text-based information (3M Corporation, 2001). Recently, we have witnessed a significant surge in conversing with images due to the popularity of social networking platforms. The other reason for embracing usage of image data is the mass availability of high-resolution cellphone cameras. Wide usage of image data in diversified application areas including medical science, media, sports, remote sensing, and so on, has spurred the need for further research in optimizing archival, maintenance, and retrieval of appropriate image content to leverage data-driven decision-making. This book demonstrates several techniques of image processing to represent image data in a desired format for information identification. It discusses the application of machine learning and deep learning for identifying and categorizing appropriate image data helpful in designing automated decision support systems. The book offers comprehensive coverage of the most essential topics, including: Image feature extraction with novel handcrafted techniques (traditional feature extraction) Image feature extraction with automated techniques (representation learning with CNNs) Significance of fusion-based approaches in enhancing classification accuracy MATLAB® codes for implementing the techniques Use of the Open Access data mining tool WEKA for multiple tasks The book is intended for budding researchers, technocrats, engineering students, and machine learning/deep learning enthusiasts who are willing to start their computer vision journey with content-based image recognition. The readers will get a clear picture of the essentials for transforming the image data into valuable means for insight generation. Readers will learn coding techniques necessary to propose novel mechanisms and disruptive approaches. The WEKA guide provided is beneficial for those uncomfortable coding for machine learning algorithms. The WEKA tool assists the learner in implementing machine learning algorithms with the click of a button. Thus, this book will be a stepping-stone for your machine learning journey. Please visit the author's website for any further guidance at https://www.rikdas.com/
Choose an application
Christian special devotions --- History --- bedevaarten --- geschiedenis --- Scherpenheuvel --- bijgeloof --- prentkunst
Choose an application
Choose an application
Interdisciplinary approaches using Machine Learning and Deep Learning techniques are smartly addressing real life challenges and have emerged as an inseparable element of disruption in current times. Applications of Disruptive Technology in Management practices are an ever interesting domain for researchers and professionals. This volume entitled Emerging Trends in Disruptive Technology Management for Sustainable Development has attempted to collate five different interesting research approaches that have innovatively reflected diverse potential of disruptive trends in the era of 4th. Industrial Revolution. The uniqueness of the volume is going to cater the entrepreneurs and professionals in the domain of artificial intelligence, machine learning, deep learning etc. with its unique propositions in each of the chapters. The volume is surely going to be a significant source of knowledge and inspiration to those aspiring minds endeavouring to shape their futures in the area of applied research in machine learning and computer vision. The expertise and experiences of the contributing authors to this volume is encompassing different fields of proficiencies. This has set an excellent prelude to discover the correlation among multidisciplinary approaches of innovation. Covering a broad range of topics initiating from IoT based sustainable development to crowd sourcing concepts with a blend of applied machine learning approaches has made this volume a must read to inquisitive wits. Features Assorted approaches to interdisciplinary research using disruptive trends Focus on application of disruptive technology in technology management Focus on role of disruptive technology on sustainable development Promoting green IT with disruptive technology The book is meant to benefit several categories of students and researchers. At the students' level, this book can serve as a treatise/reference book for the special papers at the masters level aimed at inspiring possibly future researchers. Newly inducted PhD aspirants would also find the contents of this book useful as far as their compulsory course-works are concerned. At the researchers' level, those interested in interdisciplinary research would also be benefited from the book. After all, the enriched interdisciplinary contents of the book would always be a subject of interest to the faculties, existing research communities and new research aspirants from diverse disciplines of the concerned departments of premier institutes across the globe. This is expected to bring different research backgrounds (due to its cross platform characteristics) close to one another to form effective research groups all over the world. Above all, availability of the book should be ensured to as much universities and research institutes as possible through whatever graceful means it may be. Hope this volume will cater as a ready reference to your quest for diving deep into the ocean of technology management for 4th. Industrial Revolution.
Disruptive technologies. --- Disruptive technologies --- Machine learning. --- Management.
Choose an application
"This text has attempted to collate quality research articles ranging from Mathematical Disposition for Neural Nets to Cognitive Computing, Quantum Machine learning, Multi-modal Emotion Recognition System, Responsible AI, AI for Accessibility and Inclusion and Artificial Intelligence enabled applications in the segment of Health, Pharma and Education"--
Artificial intelligence. --- Artificial intelligence --- Medical applications.
Choose an application
The publication is attempted to address emerging trends in machine learning applications. Recent trends in information identification have identified huge scope in applying machine learning techniques for gaining meaningful insights. Random growth of unstructured data poses new research challenges to handle this huge source of information. Efficient designing of machine learning techniques is the need of the hour. Recent literature in machine learning has emphasized on single technique of information identification. Huge scope exists in developing hybrid machine learning models with reduced computational complexity for enhanced accuracy of information identification. This book will focus on techniques to reduce feature dimension for designing light weight techniques for real time identification and decision fusion. Key Findings of the book will be the use of machine learning in daily lives and the applications of it to improve livelihood. However, it will not be able to cover the entire domain in machine learning in its limited scope. This book is going to benefit the research scholars, entrepreneurs and interdisciplinary approaches to find new ways of applications in machine learning and thus will have novel research contributions. The lightweight techniques can be well used in real time which will add value to practice.
Choose an application
Choose an application
Choose an application
Scherpenheuvel --- Histoire --- Iconographie
Choose an application
Plaatselijke geschiedenis --- Brabant --- Devotie
Listing 1 - 10 of 14 | << page >> |
Sort by
|