Listing 1 - 3 of 3 |
Sort by
|
Choose an application
L’homme a toujours mesuré le monde, pour mieux l’appréhender et l’explorer, y vivre et interagir avec ses semblables. Mais il lui a fallu inventer un système valable pour tous. C’est à Paris, en 1960 et 1971, qu’ont été définies sept unités de mesure fondamentales – le mètre, la seconde, le kilogramme, le kelvin, l'ampère, la mole et la candela – grâce auxquelles nous quantifions tout, de l’infiniment petit à l’infiniment grand. En sept chapitres remplis d’anecdotes, c’est toute l’histoire de cette fascinante aventure scientifique qui défile sous nos yeux, des théories d’Einstein à la haute technologie numérique. Et demain ? Gageons que la science des mesures, désormais fondée sur des constantes immuables comme la vitesse de la lumière, nous aidera à bâtir un avenir durable et respectueux de l'environnement.
Choose an application
The Large-Scale Structure of Inductive Inference investigates the relations of inductive support on the large scale, among the totality of facts comprising a science or science in general. These relations form a massively entangled, non-hierarchical structure which is discovered by making hypotheses provisionally that are later supported by facts drawn from the entirety of the science. What results is a benignly circular, self-supporting inductive structure in which universal rules are not employed, the classical Humean problem cannot be formulated and analogous regress arguments fail. The earlier volume, The Material Theory of Induction, proposed that individual inductive inferences are warranted not by universal rules but by facts particular to each context. This book now investigates how the totality of these inductive inferences interact in a mature science. Each fact that warrants an individual inductive inference is in turn supported inductively by other facts. Numerous case studies in the history of science support, and illustrate further, those claims. This is a novel, thoroughly researched, and sustained remedy to the enduring failures of formal approaches to inductive inference.With The Large-Scale Structure of Inductive Inference, author John D. Norton presents a novel, thoroughly researched, and sustained remedy to the enduring failures of formal approaches of inductive inference.
Induction (Logic) --- Dalton, Cannizzaro, atomic weights. --- Hume’s problem. --- Induction. --- Newton on Gravitation. --- atomic spectra. --- circularity. --- deductive inference. --- dowsing. --- history of planetary distances. --- hypothesis. --- inductive inference. --- local theory. --- radiocarbon dating. --- recession of the nebulae. --- regress. --- self-supporting. --- stock market prediction. --- the problem of induction.
Choose an application
Lie algebras. --- Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Infinite-dimensional Lie (super)algebras. --- Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras. --- Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Representations, algebraic theory (weights). --- Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Structure theory. --- Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Virasoro and related algebras. --- Nonassociative rings and algebras -- Lie algebras and Lie superalgebras.
Listing 1 - 3 of 3 |
Sort by
|