Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Life on earth has evolved under a consistent cycle of light and darkness caused by the earth's rotation around its axis. This has led to a 24-hour circadian system in most organisms, ranging all the way from fungi to humans. With the advent of electric light in the 19th century, cycles of light and darkness have drastically changed. Shift workers and others exposed to high levels of light at night are at increased risk of health problems, including metabolic syndrome, depression, sleep disorders, dementia, heart disease, and cancer. This book will describe how the circadian system regulates physiology and behavior and consider the important health repercussions of chronic disruption of the circadian system in our increasingly lit world. The research summarized here will interest students in psychology, biology, neuroscience, immunology, medicine, and ecology.
Circadian rhythms. --- Circadian rhythms --- Health aspects.
Choose an application
Cycle veille-sommeil. --- Rythmes circadiens. --- Sleep-wake cycle. --- Circadian rhythms.
Choose an application
This edited volume focuses on the interplay between sleep and circadian rhythms with health, aging and longevity. Sleep is absolutely important for human health and survival, as insufficient sleep is associated with a plethora of conditions, including the poor quality of life, onset of several diseases, and premature death. The sleep–wake cycle is an evolutionary conserved neurobiological phenomenon, and is a prominent manifestation of the biological clocks localised in the suprachiasmatic nucleus (SCN). Understanding bidirectional relationship between sleep and circadian rhythms is of utmost importance and urgency, especially in the context of modern lifestyle where sleep is often out of phase with the internal body clocks, social jetlag, artificial lights and so on. The 25 chapters by leading researchers and experts from 11 countries are arranged into seven sections: understanding sleep and clock interlink in health and longevity; sleep, aging and longevity; clock, aging and longevity; melatonin, sleep and clock; genetic regulation of sleep and clock; therapeutic interventions in sleep disorders and clock misalignment; and experimental models to study sleep and clocks in aging and longevity. This book is useful for advanced undergraduate and graduate students, and researchers, educators, and other biomedical professionals. .
Histology. Cytology --- Biology --- Physiology: reproduction & development. Ages of life --- Pathological biochemistry --- Neuropathology --- Human medicine --- medische biochemie --- veroudering (biologie) --- neurologie --- biologie --- biomedische wetenschappen --- cytologie --- Aging. --- Cytology. --- Circadian rhythms. --- Neurosciences. --- Medicine --- Ageing. --- Cellular Circadian Rhythms. --- Neuroscience. --- Biomedical Research. --- Research.
Choose an application
Light pollution. --- Circadian rhythms. --- Night --- Light and darkness --- Pollution lumineuse. --- Rythmes circadiens. --- Nuit --- Physiological effect. --- Effets physiologiques.
Choose an application
This book reviews the physiological mechanisms of diverse insect clocks, including circadian clock, lunar clock, tidal clock, photoperiodism, circannual rhythms and others. It explains the commonality and diversity of insect clocks, focusing on the recent advances in their molecular and neural mechanisms. In the history of chronobiology, insects provided important examples of diverse clocks. The first report of animal photoperiodism was in an aphid, and the time-compensated celestial navigation was first shown in the honeybee. The circadian clock was first localized in the brain of a cockroach. These diverse insect clocks also have some common features which deserve to be reviewed in a single book. The central molecular mechanism of the circadian clock, i.e., the negative feedback loop of clock genes, was proposed in Drosophila melanogaster in the 1990s and later became the subject of the Nobel Prize in Physiology or Medicine in 2017. Thereafter, researches on the molecular and neural mechanisms in diverse insect clocks other than the Drosophila circadian clock also advanced appreciably. Various new methods including RNAi, NGS, and genome editing with CRISPR-Cas9 have become applicable in these researches. This book comprehensively reviews the physiological mechanisms in diverse insect clocks in the last two decades, which have received less attention than the Drosophila circadian clock. The book is intended for researchers, graduate students, and highly motivated undergraduate students in biological sciences, especially in entomology and chronobiology. .
Invertebrates. --- Cytology. --- Circadian rhythms. --- Physiology. --- Invertebrate Zoology. --- Cellular Circadian Rhythms. --- Animal Physiology. --- Animal physiology --- Animals --- Biology --- Anatomy --- Behavior, Circadian --- Biological clocks, Daily --- Circadian behavior --- Circadian clocks --- Circadian cycles --- Clocks, Circadian --- Cycles, Circadian --- Daily activity cycles --- Daily biological clocks --- Diel cycles --- Diurnal rhythms --- Rhythms, Circadian --- Biological rhythms --- Cell biology --- Cellular biology --- Cells --- Invertebrata --- Physiology --- Chronobiology. --- Insects
Listing 1 - 5 of 5 |
Sort by
|