Listing 1 - 10 of 15 | << page >> |
Sort by
|
Choose an application
This Special Issue of the journal Entropy, titled “Information Geometry I”, contains a collection of 17 papers concerning the foundations and applications of information geometry. Based on a geometrical interpretation of probability, information geometry has become a rich mathematical field employing the methods of differential geometry. It has numerous applications to data science, physics, and neuroscience. Presenting original research, yet written in an accessible, tutorial style, this collection of papers will be useful for scientists who are new to the field, while providing an excellent reference for the more experienced researcher. Several papers are written by authorities in the field, and topics cover the foundations of information geometry, as well as applications to statistics, Bayesian inference, machine learning, complex systems, physics, and neuroscience.
decomposable divergence --- tensor Sylvester matrix --- maximum pseudo-likelihood estimation --- matrix resultant --- ?) --- Markov random fields --- Fisher information --- Fisher information matrix --- Stein equation --- entropy --- Sylvester matrix --- information geometry --- stationary process --- (? --- dually flat structure --- information theory --- Bezout matrix --- Vandermonde matrix
Choose an application
This Special Issue of the journal Entropy, titled “Information Geometry I”, contains a collection of 17 papers concerning the foundations and applications of information geometry. Based on a geometrical interpretation of probability, information geometry has become a rich mathematical field employing the methods of differential geometry. It has numerous applications to data science, physics, and neuroscience. Presenting original research, yet written in an accessible, tutorial style, this collection of papers will be useful for scientists who are new to the field, while providing an excellent reference for the more experienced researcher. Several papers are written by authorities in the field, and topics cover the foundations of information geometry, as well as applications to statistics, Bayesian inference, machine learning, complex systems, physics, and neuroscience.
decomposable divergence --- tensor Sylvester matrix --- maximum pseudo-likelihood estimation --- matrix resultant --- ?) --- Markov random fields --- Fisher information --- Fisher information matrix --- Stein equation --- entropy --- Sylvester matrix --- information geometry --- stationary process --- (? --- dually flat structure --- information theory --- Bezout matrix --- Vandermonde matrix
Choose an application
This Special Issue of the journal Entropy, titled “Information Geometry I”, contains a collection of 17 papers concerning the foundations and applications of information geometry. Based on a geometrical interpretation of probability, information geometry has become a rich mathematical field employing the methods of differential geometry. It has numerous applications to data science, physics, and neuroscience. Presenting original research, yet written in an accessible, tutorial style, this collection of papers will be useful for scientists who are new to the field, while providing an excellent reference for the more experienced researcher. Several papers are written by authorities in the field, and topics cover the foundations of information geometry, as well as applications to statistics, Bayesian inference, machine learning, complex systems, physics, and neuroscience.
decomposable divergence --- tensor Sylvester matrix --- maximum pseudo-likelihood estimation --- matrix resultant --- ?) --- Markov random fields --- Fisher information --- Fisher information matrix --- Stein equation --- entropy --- Sylvester matrix --- information geometry --- stationary process --- (? --- dually flat structure --- information theory --- Bezout matrix --- Vandermonde matrix
Choose an application
This book presents new and original research in Statistical Information Theory, based on minimum divergence estimators and test statistics, from a theoretical and applied point of view, for different statistical problems with special emphasis on efficiency and robustness. Divergence statistics, based on maximum likelihood estimators, as well as Wald's statistics, likelihood ratio statistics and Rao's score statistics, share several optimum asymptotic properties, but are highly non-robust in cases of model misspecification under the presence of outlying observations. It is well-known that a small deviation from the underlying assumptions on the model can have drastic effect on the performance of these classical tests. Specifically, this book presents a robust version of the classical Wald statistical test, for testing simple and composite null hypotheses for general parametric models, based on minimum divergence estimators.
n/a --- mixture index of fit --- Kullback-Leibler distance --- relative error estimation --- minimum divergence inference --- Neyman Pearson test --- influence function --- consistency --- thematic quality assessment --- asymptotic normality --- Hellinger distance --- nonparametric test --- Berstein von Mises theorem --- maximum composite likelihood estimator --- 2-alternating capacities --- efficiency --- corrupted data --- statistical distance --- robustness --- log-linear models --- representation formula --- goodness-of-fit --- general linear model --- Wald-type test statistics --- Hölder divergence --- divergence --- logarithmic super divergence --- information geometry --- sparse --- robust estimation --- relative entropy --- minimum disparity methods --- MM algorithm --- local-polynomial regression --- association models --- total variation --- Bayesian nonparametric --- ordinal classification variables --- Wald test statistic --- Wald-type test --- composite hypotheses --- compressed data --- hypothesis testing --- Bayesian semi-parametric --- single index model --- indoor localization --- composite minimum density power divergence estimator --- quasi-likelihood --- Chernoff Stein lemma --- composite likelihood --- asymptotic property --- Bregman divergence --- robust testing --- misspecified hypothesis and alternative --- least-favorable hypotheses --- location-scale family --- correlation models --- minimum penalized ?-divergence estimator --- non-quadratic distance --- robust --- semiparametric model --- divergence based testing --- measurement errors --- bootstrap distribution estimator --- generalized renyi entropy --- minimum divergence methods --- generalized linear model --- ?-divergence --- Bregman information --- iterated limits --- centroid --- model assessment --- divergence measure --- model check --- two-sample test --- Wald statistic --- Hölder divergence
Choose an application
This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this field
surface subsidence --- PS --- permanent scatterers --- land subsidence --- PS-InSAR --- thermal dilation --- SBAS-InSAR --- Sepulveda Transit Corridor --- deformation --- differential SAR interferometry --- reclaimed land --- Istanbul --- deformation monitoring --- skyscrapers --- generalized likelihood ratio test --- validation --- uplift --- displacement monitoring --- pursuit monostatic --- radar interferometry --- Sentinel-1A --- urbanization --- synthetic aperture radar --- Turkey --- terraSAR-X --- geological and geomorphological mapping --- London --- differential compaction --- expansive soils --- health monitoring --- Copernicus Sentinel-1 --- displacement mapping --- PALSAR --- land reclamation --- tomography --- Venetian-Friulian Plain --- ALOS PALSAR --- multi-temporal DInSAR --- SAR interferometry --- InSAR --- persistent scatterers --- carbonate karstification --- ENVISAT ASAR --- multiple PS detection --- sparse signals --- urban subsidence --- time series InSAR analysis --- time series analysis --- Persistent Scatterer Interferometry (PSI) --- engineering construction --- Rome --- persistent scatterer interferometry --- subsidence --- persistent scatterer interferometry (PSI) --- SNAP-StaMPS --- Lingang New City --- dewatering --- atmospheric component --- urban deformation monitoring --- Sentinel-1 --- differential interferometry --- Late-Quaternary deposits --- modelling --- Generalized Likelihood Ratio Test --- Persistent Scatterer Interferometry --- synthetic aperture radar (SAR) --- Capon estimation --- differential tomography --- deformation time series --- groundwater level variation --- radar detection --- multi-look SAR tomography --- spaceborne SAR --- SAR --- ERS-1/-2 --- reclamation settlements --- Wuhan --- subsidence monitoring --- water level changes --- polarimetry --- asymmetric subsidence --- urban monitoring --- urban areas --- landslide --- SAR tomography --- Urayasu City --- risk --- Los Angeles --- PALSAR-2
Choose an application
This Special Issue contains a series of excellent research works on telecommunications and signal processing, selected from the 2018 41st International Conference on Telecommunications and Signal Processing (TSP) which was held on July 4-6, 2018, in Athens, Greece. The conference was organized in cooperation with the IEEE Region 8 (Europe, Middle East, and Africa), IEEE Greece Section, IEEE Czechoslovakia Section, and IEEE Czechoslovakia Section SP/CAS/COM Joint Chapter by seventeen universities from the Czech Republic, Hungary, Turkey, Taiwan, Japan, Slovak Republic, Spain, Bulgaria, France, Slovenia, Croatia, and Poland, for academics, researchers, and developers, and serves as a premier international forum for the annual exchange and promotion of the latest advances in telecommunication technology and signal processing. The aim of the conference is to bring together both novice and experienced scientists, developers, and specialists, to meet new colleagues, collect new ideas, and establish new cooperation between research groups from universities, research centers, and private sectors worldwide. This collection of 10 papers is highly recommended for researchers, and believed to be interesting, inspiring, and motivating for readers in their further research.
similarity measure --- dynamic time warping --- n/a --- Least Absolute Shrinkage and Selection Operator (LASSO) --- multispectral information --- transmission convergence layer --- 3D segmentation --- micrographia --- MATLAB --- neural network --- wireless communication --- identification --- interference alignment --- Parkinson’s disease dysgraphia --- NG-PON2 --- timing --- GPON --- semantic segmentation --- fractional-order filters --- maximum likelihood criterion --- kinematic analysis --- multitemporal data --- fractional calculus --- multi-hop relay network --- u-net --- interference leakage --- Richardson iteration --- activation process --- acoustic analysis --- follow-up study --- fractional-order derivative --- electrocardiogram (ECG) --- deep learning --- security --- modulo M quasi-stationary --- cognitive radio --- low-pass filters --- time-interleaved analog-to-digital converter (TIADC) --- sample-and-hold (S/H) mismatch --- authentication --- pattern recognition --- online handwriting --- sparse inference --- Taylor series --- EPON --- open-source --- spine --- machine learning --- brain --- signal representation --- magnitude responses --- Chebyshev filters --- XG-PON --- phonation --- hypokinetic dysarthria --- Parkinson’s disease --- overcomplete multi-scale dictionary construction --- Parkinson's disease dysgraphia --- Parkinson's disease
Choose an application
Although the theme of the monograph is primarily related to "Applied Econometrics", there are several theoretical contributions that are associated with empirical examples, or directions in which the novel theoretical ideas might be applied. The monograph is associated with significant and novel contributions in theoretical and applied econometrics; economics; theoretical and applied financial econometrics; quantitative finance; risk; financial modeling; portfolio management; optimal hedging strategies; theoretical and applied statistics; applied time series analysis; forecasting; applied mathematics; energy economics; energy finance; tourism research; tourism finance; agricultural economics; informatics; data mining; bibliometrics; and international rankings of journals and academics.
FHA loan --- E42 --- Misery Index --- economic development --- managing of financial health --- duration models --- system GMM --- maximum likelihood estimator --- FMOLS --- market microstructure --- foreclosure --- company performance --- vector error correction model (VECM) --- earnings forecasts --- multivariate regression models --- competing risks --- social network model --- price recovery --- trading behavior --- efficiency --- prediction methods --- panel data --- nonlinearity --- control environment --- earnings announcements --- economic freedom --- E58 --- risk of bankruptcy --- foreign direct investment --- Granger causality test --- budgetary system and strategies --- denomination range --- heavy-tailed data --- unemployment --- exploratory diagnostics --- EGARCH --- historical time series --- home mortgage --- economic growth --- abnormal returns --- uncorrelated multivariate Student distribution --- post-communist countries --- nonparametric time series modeling --- inflation --- unified time series algorithm --- unobserved heterogeneity --- JEL Classification --- Fama-French factor model --- oil price --- risk spillover --- exchange rate --- Nigeria --- financial markets --- middle income countries --- trade balance --- independent multivariate Student distribution --- panel data factor model --- Mahalanobis distances --- derivatives market --- operational control --- Okun’s law --- default and prepayment --- DOLS --- income inequality --- frequency domain causality --- Granger-causality tests --- cointegration --- financial analysts --- postage stamps --- cash payments --- Probit and Logit models
Choose an application
Stochastic processes have wide relevance in mathematics both for theoretical aspects and for their numerous real-world applications in various domains. They represent a very active research field which is attracting the growing interest of scientists from a range of disciplines.This Special Issue aims to present a collection of current contributions concerning various topics related to stochastic processes and their applications. In particular, the focus here is on applications of stochastic processes as models of dynamic phenomena in research areas certain to be of interest, such as economics, statistical physics, queuing theory, biology, theoretical neurobiology, and reliability theory. Various contributions dealing with theoretical issues on stochastic processes are also included.
arithmetic progressions --- weighted quadratic variation --- fractional differential-difference equations --- small deviations --- periodic intensity functions --- realized volatility --- rate of convergence --- host-parasite interaction --- first Chebyshev function --- regularly varying functions --- Cohen and Grossberg neural networks --- mixture of Gaussian laws --- diffusion model --- transition densities --- re-service --- Strang–Marchuk splitting approach --- random delays --- nematode infection --- first-passage-time --- total variation distance --- forecast combinations --- products of primes --- discrete time stochastic model --- multiplicative noises --- slowly varying functions --- growth curves --- stochastic process --- loan interest rate regulation --- birth-death process --- non-Markovian queue --- catastrophes --- exogenous factors --- seasonal environment --- repairs --- proportional hazard rates --- structural breaks --- transient probabilities --- first passage time (FPT) --- bounds --- double-ended queues --- mixed Gaussian process --- stochastic order --- time between inspections --- busy period --- diffusion --- continuous-time Markov chains --- general bulk service --- time-non-homogeneous birth-death processes --- stand-by server --- reliability --- sensor networks --- random impulses --- scale family of distributions --- maximum likelihood estimation --- multi-state network --- totally positive of order 2 --- lognormal diffusion process --- fractional birth-death processes --- exact asymptotics --- stochastic orders --- time-non-homogeneous jump-diffusion processes --- asymptotic distribution --- inverse first-passage problem --- nonhomogeneous Poisson process --- two-dimensional signature --- multiple vacation --- first-passage time --- mean square stability --- fractional queues --- differential entropy --- random parameter matrices --- Wasserstein distance --- breakdown and repair --- fusion estimation
Choose an application
information theoretic analysis --- multiplexing system --- HSI for biology --- point target detection --- digital elevation model --- neural networks --- oxygen saturation --- black polymers --- PZT --- blood detection --- multivariate analysis --- integral imaging --- hemispherical conical reflectance factor (HCRF) --- sprouting --- fluorescence --- multitemporal hyperspectral images --- plant phenotyping --- hyperspectral data mining and compression --- Raman --- medical imaging by HSI --- compressive detection --- stereo imaging --- image processing --- wound healing --- quality control --- lossless compression --- infrared hyperspectral imaging --- spectral tracking --- time series --- remote sensing --- diabetic foot ulcer --- classification --- Raman spectroscopy --- imaging --- fingerprints --- fusion --- wavelength selection --- Cramer–Rao lower bound --- three-dimensional imaging --- chemical imaging --- CS-MUSI --- total variation --- coastal dynamics --- forward observation model --- hyperspectral imaging --- fluorescence hyperspectral imaging --- age determination --- potatoes --- painting samples --- predictive coding --- hyperspectral --- video --- bi-directional reflectance distribution function (BRDF) --- optimal binary filters --- watercolours --- deep learning --- spectroscopy --- moving vehicle imaging --- sorting --- maximum likelihood --- multivariate data analysis --- interval partial least squares --- disease detection --- Raman hyperspectral imaging --- primordial leaf count --- machine learning --- spatial light modulators (SLM) --- Virginia Coast Reserve Long Term Ecological Research (VCR LTER) --- digital micromirror device (DMD) --- hyperspectral microscopy --- alternating direction method of multipliers --- statistical methods for HSI --- multiband image fusion --- digital light processor (DLP) --- linear mixture model --- retouching pigments --- liquid crystal --- principal component analysis --- Chemometrics --- compressive sensing --- PLSR --- Hyperspectral imaging
Choose an application
Global population growth is urban growth and, therefore, most of the water-related challenges and solutions reside in cities. Unless water management and water governance processes are significantly improved within the next decade or so, cities are likely to face serious and prolonged water insecurity, urban floods, and/or heat stress, which may result in social instability and, ultimately, massive migration. Aging water infrastructure, one of the most expensive infrastructures in cities, is a relevant challenge in order to address Sustainable Development Goal (SDG) 6: clean water and sanitation, SDG 11: sustainable cities and communities, and SDG 13: climate action. The choice of good governance arrangements has important consequences for economic performance, for the well-being of citizens, and for the quality of life in urban areas. The better governance arrangements work in coordinating policies across jurisdictions and policy fields, the better the outcomes. Rapidly-changing global conditions will make future water governance more complex than ever before in human history, and expectations are that water governance and water management will change more during the next 20 years compared to the past 100 years. In this Special Issue of Water, the focus will be on practical concepts and tools for water management and water governance, with a focus on cities.
flood resilience --- flood risk --- Cape Town --- Sustainable Development Goals (SDGs) --- sustainable development goals --- urban planning --- coordination --- IHP --- storm water management --- stakeholder involvement --- flood risk management --- water management sustainability --- Generalized Likelihood Uncertainty Estimation (GLUE) --- climate change --- urban water cycle --- wastewater management --- water policy --- governance capacity --- greenhouse gas emissions --- intergovernmental --- Urban Water Management Programme --- indicators --- sustainability --- city networks --- water sensitive cities --- water scarcity --- ICLEI --- flood damage assessment --- stakeholder participation --- SuDS --- climate change mitigation --- social network analysis --- water ecology --- SDGs --- urban resilience --- design rainfall event --- cost of inaction --- rainwater harvesting --- co-design --- UNESCO --- rainfall-runoff --- storm water control measure --- decentralized water reclamation with resource recovery --- baseline assessment --- City Blueprint Approach --- urban water management --- urban landscape --- governance strategies --- science and technology --- drinking water --- Integrated Water Resources Management --- resilience --- Sponge City --- stormwater reservoir --- use-attainment --- sustainability assessment --- water security --- Water-Energy-Food Nexus --- water management --- water supply --- Storm Water Management Model (SWMM) --- urban drainage --- lifecycle analysis --- social infrastructure --- urban pluvial flooding --- assessment framework --- footprint --- climate change adaptation --- infrastructure --- total cost of ownership --- water governance --- flood control --- water-reuse --- governance
Listing 1 - 10 of 15 | << page >> |
Sort by
|